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ABSTRACT

ELECTROMAGNETIC SCATTERING BY COATED CONVEX SURFACES

AND WEDGES SIMULATED BY APPROXIMATE BOUNDARY

CONDITIONS

Asymptotic/high-frequency solutions are developed for analyzing the non- spec-

ular scattering mechanisms associated with coated convex surfaces and edges

simulated by approximate boundary conditions. In particular, the standard

impedance boundary conditions (SIBCs) and the second order generalized

impedance boundary conditions (GIBCs) are employed for a characterization

of the edge diffraction, creeping wave and surface diffracted wave contributions.

To study the creeping wave and surface diffracted wave mechanisms, rigorous

UTD (uniform geometrical theory of diffraction) diffraction coefficients are de-

veloped for a convex coated cylinder simulated with SIBCs and GIBCs. The ray

solutions obtained remain valid in the transition region and reduce uniformly

to those in the deep lit and shadow regions. A uniform asymptotic solution is

also presented for observations in the close vicinity of the cylinder. The diffrac-

tion coefficients for a convex cylinder are obtained via a generalization of the

corresponding ones for the circular cylinder. To validate the asymptotic/high-



frequencysolution integral equationsarederived for both E and H-polarization

and solved numerically using the method of moments. Results are presented

for a single and three layered coated convex cylinder. Some insights are also

provided on the accuracy of the employed GIBCs versus SIBCs for application

to curved surfaces. To characterize the scattering by impedance wedges illumi-

nated at skew incidence, diffraction coefficients are derived from an approximate

solution of the governing functional difference equations. This solution exactly

recovers the known ones for an impedance half plane or an arbitrary wedge at

normal incidence and to validate it for other wedge angles a moment method

code was used. Finally, to test the usefulness of the approximate skew incidence

impedance wedge diffraction coefficient for three dimensional structures, equiv-

alent currents are derived in the context of PTD for a finite length impedance

wedge of arbitrary internal angle. These axe incorporated in a standard general

purpose physical theory of diffraction (PTD) code and results are presented for

a number of different impedance structures.
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CHAPTER I

INTRODUCTION

The subject of this dissertation deals with the characterization of the non- spec-

ular electromagnetic scattering from coated and impedance structures in the context

of asymptotic/high-frequency techniques. Nowadays, the study of both specular and

non-specular electromagnetic scattering mechanisms is crucial in the design of all

high performance airborne vehicles with low radar cross section (RCS). Shaping and

radar absorbing materials are commonly employed to reduce the radar reflectivity of

these vehicles. However, in most cases, only the specular contributions from electri-

cally large structures can be effectively reduced by shaping. This leaves non-specular

or diffraction contributions primarily caused by edges, creeping waves and surface

diffracted waves, as the dominant terms. It is, therefore, important to examine the

effect of radar absorbing materials in controlling non-specular scattering.

A common technique for RCS control is to use radar absorbing coatings and over

the past few years much attention has been given to the electromagnetic charac-

terization of such coatings. Methods have been developed to simulate the material

coatings by approximate boundary conditions which offer several advantages in both

asymptotic and numerical analyses of electromagnetic problems. For example, in the

case of asymptotic/high-frequency analysis, the coating can be replaced by a single



boundary condition suitable for the applicationof the Wiener-Hopf technique[1,2]or

someother function theoreticapproach[3,11]. In numerical analysis,the replacement

of the profile of the coating with a single boundary condition eliminates the need

to introduce unknown polarization currents inside the coating. This, significantly,

reduces the total number of unknowns and results in a more efficient solution.

The standard impedance boundary condition (SIBC) [4] has been frequently em-

ployed to simulate composite material coatings on metallic structures. However, it is

well-known that the SIBC simulation is accurate only if the coating is very thin and

has a high index of refraction. One of the major reasons for this is because the SIBC

cannot model the polarization current components which are normal to the coating.

To improve the accuracy of the SIBC simulation, higher order impedance boundary

conditions were recently developed [5] and found to be capable of simulating thicker

coatings with greater accuracy. These conditions involve higher order derivatives of

the fields beyond the first and can be thought as a generalization to the SIBC. They

are ,therefore, referred to as the generalized impedance boundary conditions (GIBC)

and one of their advantages is again a simplification in the analysis.

In our study, the SIBC and second order GIBC will be used for a characteriza-

tion of the edge diffraction, creeping wave and surface diffracted wave contributions.

The characterizations will be carried out via asymptotic/function theoretic methods

which have been traditionally used in high-frequency studies (i.e. where the scat-

terer is many wavelengths in size). An important advantage of the asymptotic/high-

frequency techniques over numerical methods is that the scattered field from a com-

plex structure is a priori subdivided into contributions from its different components.

This gives an insight into the importance of each scattering contributor which is par-

ticularly useful for designing vehicles with given radar cross section. Among the most



popular asymptotic/high-frequency methods are the geometrical theory of diffrac-

tion (GTD) and physical theory of diffraction (PTD). The GTD/PTD formulations

can permit characterizationsof non- metallic geometriesbut require the appropriate

diffraction coefficientsassociatedwith a specific discontinuity in surfacecurvature

or material composition. Thesediffraction coefficientsplay a role similar to the re-

flection and transmission coefficientsof the GO reflected and transmitted rays and

can be determined from an exact analytical solution of a correspondingcanonical

geometry. Unfortunately, this hasonly beenrigorously accomplishedfor a handful

of geometrieswhich primarily include metallic edgesand wedgesat normal and skew

incidences[6]-[8], secondorder surfacediscontinuity [9,10],impedancewedgesat nor-

mal incidence[11], thin dielectric and resistiveedgesat normal and skew incidences

[12,13],impedanceor material discontinuities in a plane [14,15]and the right-angled

wedgeat skew incidence with one of its facesperfectly conducting [16]. Solutions

may bealso found in the literature for creepingwavecharacterizationsand for some

non-genericconfigurations.

The main goal of this dissertation is to develop asymptotic/high-frequency so-

lutions for analyzing the non-_pecularscattering mechanismsproduced by coated

convexsurfacesand edgessimulatedby the approximate boundary conditions. Also,

to validate the accuracyof theseasymptotic solutions, integral equationsare derived

on the basisof the employedSIBCs and GIBCs. The integral equation solutions are

then usedfor benchmarking the proposedasymptotic expressions.Someinsights are

also provided on the accuracyof the employedGIBCs for the subject geometries.

The organization of this dissertation is as follows. In chapter two, both the

SIBCs and the GIBCs are presentedfor simulating a material coating on a metallic

substrate. The GIBCs involve higherorder derivatives having coefficientswhich are



4

determined using the exact reflection coefficient of the metal-backed coating. As an

illustration, the simulation of metal-baked uniform and three layer dielectric coatings

is given.

Chapter three deals with numerical solutions on the basis of a second order GIBC.

The GIBCs have so far been presented for simple planar surfaces such as a uniform

coating on a ground plane [5,17] and a resistive sheet [17,18]. Of practical interest,

however, is the application of these conditions to multilayer and inhomogeneous

coatings and layers forming arbitrarily curved surfaces. In this case, the derived

GIBC for a planar coating is extended to the curved surface by postulation. The

accuracy of such an extension as a function of curvature is, of course, in question

and its examination for surfaces other than circular, spherical or elliptical requires

a numerical solution. In chapter three, a numerical implementation of a second

order GIBC, simulating the coating on a metallic cylinder of arbitrary shape, is

considered. Integral equations, for both E and H- polarization, are derived and

solved numerically using the method of moments. Results are presented for a single

and three layered coated circular and ogival cylinder and the accuracy of the given

GIBCs verses SIBCs is discussed. This numerical implementation is, also, needed to

validate the asymptotic/high-frequency solutions, for a convex coated cylinder which

is presented in chapter four.

In chapter four, the non-specular scattering mechanisms like creeping waves and

surface diffracted waves are considered as applied to a coated convex cylinder. Rig-

orous UTD (uniform geometrical theory of diffraction) diffraction coefficients are

presented for this geometry simulated with $IBCs and CIBCs. In particular, ray so-

lutions are obtained which remain valid in the transition region and reduce uniformly

to those in the deep lit and shadow regions. These involve new transition functions



in place of the usual Fock-type integrals, characteristic to the perfectly conducting

cylinder. A uniform asymptotic solution is also presented for observations in the

close vicinity of the cylinder. The diffraction coefficients for a convex cylinder are

obtained via a generalization of the corresponding ones for the circular cylinder. Re-

sults are presented which validate the accuracy of the ray solutions by comparing

them with those obtained from the eigenfunction solution and the numerical solution

of chapter three.

Chapter five deals with a most crucial source of non-specular electromagnetic

scattering, that of diffraction by an impedance wedge. A normal incidence solu-

tion for the diffraction by an impedance (SIBC) wedge having arbitrary included

angle is already available [11]. On the contrary, for skew incidence, solutions have

only been obtained for impedance wedges having included angles of 0 (half plane)

[12,13,14,15,19], rr/2 (with one face perfectly conducting) [14,15,16,20], 7r and 3_'/2

(with one face perfectly conducting) [14,15,19]. This is because enforcement of the

SIBCs on the wedge faces leads to a set of four coupled functional difference equa-

tions which can only be decoupled for the special cases mentioned above. In chapter

five, we present an approximate solution of the coupled difference equations by again

employing Maliuzhinets' method [11]. The derived solution recovers those for an

impedance wedge of arbitrary included angle at normal incidence and an impedance

half plane at skew incidence. The reduction of the approximate solution to that for

the right- angled wedge (the only other known exact solution) is done numerically.

In chapter six, we examine the accuracy of the approximate skew incidence dyadic

diffraction coefficient (developed in chapter five) for a variety of different wedge

angles. This is accomplished by comparison with numerical data obtained from a new

moment method solution of the coupled set of integral equations for skew incidence



on an impedance polygonal cylinder. The solution of this coupled set of integral

equations provides the surfacecurrents which are integrated to yield the scattered

field on the diffraction cone. The corresponding(first order) high-frequencysolution

for the far zone scattered field for the polygonal cylinder is then compared to the

results from the momentmethod code.

The skewincidencediffraction coefficientfor an impedancewedgeis essentialfor

computing the electromagneticscattering of practical three dimensional impedance

structures. To test the usefulnessof the approximate skew incidencesolution for

such 3-D structures, equivalent currents are presentedin the context of PTD for

a finite length impedancewedgeof arbitrary internal angle. Theseare derived in

chapter sevenand are incorporated in a standard general purpose physical theory

of diffraction (PTD) code [21]. Many patterns are computed on the basis of this

code which demonstrate the accuracyof the formulation for a number of different

impedancestructures. Theseinclude typical shapessuchasplates,finite length cones

and cylinders which have beenpartially or fully coated. The PTD implementation

required a dyadic physical optics (PO) diffraction coefficient which is derived in

appendix A.



CHAPTER II

SIMULATION OF COATED STRUCTURES

BY APPROXIMATE BOUNDARY

CONDITIONS

The use of composite materials, in the form of a uniform or non-uniform coating

applied to a metallic substrate, has led to the development of methods for simulating

material effects in electromagnetic scattering. A possible approach is to employ

approximate boundary conditions which offer several advantages in both asymptotic

and numerical analyses of electromagnetic problems. For example, in the case of

asymptotic/high frequency analysis, it allows an accurate replacement of a coating

or a layer with a single boundary condition amenable to a Wiener-Hopf analysis [1,2]

or some other function theoretic approach [3]. In numerical analysis, the profile of a

coating can be replaced by a single boundary condition on the surface of the coating.

This eliminates a need for introducing unknown polarization currents within the

coating and thus leading to a more efficient solution.

Traditionally, the standard impedance boundary condition (SIBC) [4] has been

employed to simulate dielectric coatings on perfectly conducting objects. However,

as is well known, the SIBC provides limited accuracy and is only applicable to lossy

and/or high contrast coatings. One of the major reasons for this is because it cannot

model the polarization current components that are normal to the dielectric layer.
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The SIBC has, therefore, been found to be best suited for near normal incidence

unless the coating's material properties are such that penetration within the coating

is limited.

The SIBC is a first order condition in that its definition involves a single normal

derivative of the component of the field normal to the modeled surface. Recently

[5], however, a class of boundary conditions were proposed whose major character-

istic is the inclusion of higher order derivatives (along the direction of the surface

normal) of the normal field components. These were originally introduced by Kane

and Karp [22], Karp and Karal [23], and Wienstein [17] to simulate surface wave

effects, but have been found to be rather general in nature. In fact, they can be

employed to simulate any material profile with a suitable choice of the (constant)

derivative coefficients. Appropriately, they are referred to as generalized impedance

boundary conditions (GIBCs) and can be written either in terms of tangential or

normal derivatives provided a duality condition is satisfied [5]. Unlike the SIBCs

they offer several degrees of freedom and allow an accurate prediction of the surface

reflected fields at oblique incidences. This was demonstrated in [5] for the infinite

planar surface formed by a uniform dielectric layer on a ground plane. It was found

that the maximum coating thickness accurately simulated by a given GIBC is related

to the highest order derivative included in the condition.

2.1 Standard Impedance Boundary Conditions (SIBCs)

The most common approximate boundary condition is the standard impedance

boundary condition (SIBC). It allows us to solve a two media problem while solving

explicitly for the fields only in one. This is achieved by relating the tangential fields

along the surface which takes into account the effective material composition of the
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secondmedium. The ideaof impedanceboundary conditions wasfirst introduced by

Leontovich (see[24]) and, later, Senior [251-[271reviewedand expoundedupon the

useand limitations of this principle. For the metal-backeddielectric layer shownin

figure 2.1, the impedanceboundary condition canbe mathematically written as

_ metal

X

r

Figure 2.1: Metal-backed dielectric layer.

2- (a. 2)a = _z(_ x 2) (2.1)

where fi is the normal to the surface, ,7 is the surface impedance, Z is the free

space impedance and E and H are the total electric and magnetic fields respectively.

For the metal-backed layer of thickness 6 in figure 2.1, 77 is given by (an ej''t time

dependance has been assumed and suppressed throughout)

9 = jN tan(Nk6) (2.2)
£r

where k = 2_'/A is the free space wave number, N = _ is the index of refraction

whose magnitude is assumed to be large, er and #_ are the relative permittivity

and permeability of the layer, respectively. Senior [26,27] has shown that a dual

.... I givingrelationship exists for (2.1) where ZH ---,. -E/Z, E ---* H and 71---,

1

H- (_" H)_ _Z (a x E) (2.3)
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The vector form of the SIBCs given in (2.1) and (2.3) can also be applied to curved

surfaces. However, it is required that the penetration depth of the electromagnetic

field must be small compared with the minimum thickness and minimum radius of

curvature pg of the body, and the local wavelength in the material must also be small

compared with pg. These conditions can be summarized as [27]

IlrnNIkp9 >> 1 (2.4)

It is to be noted that SIBCs support both electric and magnetic surface currents

J and M, respectively, where

J = h x H, M = -fi x E (2.5)

and the use of (2.1) yields the relationship between the two currents as

2.2

M -- -r/Z_ x J (2.6)

Generalized Impedance Boundary Conditions (GIBCs)

2.2.1 Single Layer Coating

Consider the planar single-layer coating shown in figure 2.1. An appropriate

boundary condition that simulates the coated structure takes the form [5,23]

M am (_m

(_jk)_ _y,,, E_ = 0 (2.7a)

M t 0m

a,, gv=0 (2.7b)
rtt_0

where the constants a,,_ and a" are specific to the material and geometrical properties

of the simulated structure and must be derived to allow an accurate reproduction of

the field in the region y > 0.
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Expressionsgivenin (2.7) arescalarforms of a class of GIBCs. Because, however,

they involve normal derivatives, they are not convenient to implement numerically

neither do they provide a physical meaning of what they represent. It is, therefore,

important to express (2.7) in terms of tangential derivatives. As shown in [5], this

Ican be accomplished provided am and a m are not chosen independently. For example,

when M = 1, (2.7a) and (2.7b) can be reduced to (2.1) and (2.3), respectively, where

we identify r/= ao/a_ = a'_/a' o as the surface impedance. For M = 2, (2.7) becomes

02E al ao
Oy 2 jka2 0y k2a Ev = 0

(2.8)

O H. o'10H 
Oy 2 jka_ Oy k2a_., v = 0

which can also be written in terms of tangential derivatives and, thus, exposing their

non-local character. From [5] we have that (2.8) are equivalent to

3× _x E jka VO). = a2+a----------_°ZO×Y V(_).H) (2.9)al jka]

provided the duality condition

a_ a2 + ao

+ al
(2.10)

is satisfied.

The vector form of the boundary conditions (2.9) allows us to write it in a

coordinate-free form, thus, making it applicable to non-planar surfaces. Referring to

figure 2.1, (2.9) may be rewritten as

× (fi × [E j]cal_7a2 (h.E)]) = a2+a°zn×al [g jkallaS _(fi.H')] (2.11)

where h denotes the unit normal to the surface at the point of application.
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There are a number of methods that can be employedfor deriving the constant

coefficientsa,_ and a_. One approach is to expand the plane wave reflection coef-

ficient in a suitable form leading to the identification of the constants. A second

method is a generalization of that employed in [1], where the boundary condition

at y = 0 is derived by transferring the fields from the ground plane to y = 0 via a

Taylor series expansion. Below we derive a second order GIBC by using the first of

the methods mentioned above.

Consider the plane wave

H_ = e jk(xc°s¢'+_sin¢/) (2.12)

incident on the surface y = 0, shown in figure 2.1, satisfying the GIBC given in (2.7).

The implied reflection coefficient is then

M

Y_ (-1)'_a_ sin "_ ¢'

R(¢') = _=o (2.13)M

E am sin m ¢'

with an analogous expression for the reflection coefficient associated with Ez-incidence.

We are interested in finding the constants a,,_ when the GIBC simulates the single

layer coating shown in figure 2.1. This can be accomplished by expanding the ex-

act reflection coefficient corresponding to the given coating in a form comparable to

(2.13) and thus allowing identification of the constants a,_. For an H-polarized plane

wave incidence, the exact reflection coefficient can be written as

Rh(¢') x/N2-cos2¢'tan(k6x/lq_-cos2¢ ') +je, sin¢'= - (2.14)
_/N 2 - cos 2 ¢' tan (k6x/g 2 cos 2 ¢') - je, sin ¢'

The corresponding reflection coefficient for E-polarization is

R_(¢') = _/Y2-c°s2¢'-J#'sin¢'tan(k6x/g2-c°s2¢') (2.15)

_/N 2 - cos 2 ¢' + j/_rsin ¢' tan (k6x/g _ - cos 2 ¢')

where Rh(¢') and R,(¢') are both referred to y = 0 +.



13

2.2.1.1 Low Contrast GIBCs

The low contrast conditions can be derived by introducing the approximation

tanx _ x in (2.14) for INI small [28], giving

k6sin _ ¢' + jet sin 2 ¢' + k6(N 2 - 1) (2.16)
Rh(¢') _ kgsin2¢,_ je_sin 2¢,+ k6(N 2 _ 1)

from which the constants a,n are easily found to be

(N 2 - 1)k_
ao = (2.17a)

_r

al = -j (2.17b)

k6
/A _m _

a2 = -- (z.l cc,
_ f

£r

' correspondingFollowing a similar procedure, we may also derive the constants a,_

to E:-incidence. We have

'= 1 (2.18a)ao

a'1 = jk_,.6 (2.18b)

!

a 2 _ 0 (2.18c)

2.2.1.2 High Contrast GIBCs

The high contrast conditions assume INI to be large and, therefore, using the

approximations

_/N 2 - cos 2 ¢' _ N -
1 sin s ¢'

+ _ (2.19)
2N 2N
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ka ) k_ O'tan _ sin s 6' _ 2--N sin2

in (2.14) leads to the constants

(2.20)

(2.21a)

,,2= _ tan(kaU) - tan + ka N 2_

a" = N- 9-_ 1 + tan(k6N)tan

(2.21¢)

(2.22a)

[ax = Jl*, tan(kSN) - tan (2.22b)

a s -- _-_ 1 + tan(k6N)tan k6 (N 12N)
(2.22c)

In the above, the boundary conditions implied by (2.17)-(2.22) are referred to the

surface y = 0 +.

2.2.2 Three Layer Coating

The simulation of multilayer coatings is of more practical interest and in this

section we consider the derivation of GIBCs applicable to a three layer coating with
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arbitrary constitutive parameters.The geometryof the coating is illustrated in figure

2.9.. For H-polarization the exact reflection coefficient referenced to y = 0 can be

written as

82

8 3

Y

metal

X

y

where

Figure 2.2: Illustration of a three-layer metal-backed coating.

Rh(¢')- FN(¢')
Fo(¢')

FN,o(¢') q _3k_0 k_,k_ cos(k_ 6_)cos(k_6_ ) cos(k_,_,)

_ e2eakvok_2 cos(ky353) sin(kv252) sin(ky_ 5_ )

- q ,] k_ok_,k_3_i_(k_,_)sin(k_<) cos(k_l_,)

_ e2 e2 kvokv2 kys sin(kvaSa) cos(kv252) sin(ky_ 5_ )

(2.23)
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j e2e3 k_t ky2 cos(k_a53) cos( ky252 ) sin(k_,_t )

j el e3k_,, k 2 cos(k_,353) sin(kv252) cos(k_, 5, )y2

.22± sezk_,k,,_sin(k_6_)sin(k,z,_z)sin(k_l,_,)

j e,ezk_,k_ k_ sin(k_ 6_)cos(k_z_) cos(Gx_,) (2.24)

with

kv,_ = k CN_ - cos 2 ¢'

and k_ = k sin ¢'.

(2.25)

2.2.2.1 Low Contrast GIBCs

To put (2.23) in a form compatible with (2.13) we must now expand the terms

sin(kw,6"` ) and cos(kw,6"` ) in powers of sin ¢'. The simplest case is to assume that

kwh6"` is sufficiently small allowing us to set

sin(kw,5. ) _ kw_'` (2.26)

and

cos(ku,,&_) _ 1 (2.27)

Clearly (2.26)-(2.27) also implies that N'`&, must be small and thus the resulting

boundary conditions will be valid for low contrast and thin coatings.

Substituting (2.26)-(2.27) into (2.23) and retaining only terms up to and includ-

(N?- 1)kS, (N_- 1)k52 (N32 - 1)k53
a0 = + + (2.28a)

_1 £2 63

ing 0(6,,) we obtain
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a, = -j (2.2Sb)

= + -- + (2.28c)
£2

When these are subsequently introduced into (2.9) or (2.11) we have a second order

(low contrast) GIBC for simulating a thin three-layer coating. The generalization

of (2.28) to any arbitrary number of layers is obvious provided the total coating

thickness remains small.

' correspondingFollowing a similar procedure we may also derive the constants a m

to Ez-incidence. We have

' = 1 (2.29a)a o

a_ = jk(#1,51 + _2,52 +/_36z) (2.29b)

' = 0 (2.29c)a 2

These imply a first order condition, but by retaining higher order terms in the ex-

pansion we find that

a_ = gx#2- a, (N_- 1) - a2 (N_ - 1) (2.30a)

(2.30b)

in which

a_ = -(_1 + _) (2.30c)

_1 = k2/tl/a362 [-j/_lk_l_3 A- _3]
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and

Q'2 = k2/12_1 [/._2_2 -t" tt3_3]

2.2.2.2 High Contrast GIBCs

For large N,, the approximations (2.26)-(2.27) are not valid. In this case it is

more appropriate to set

1 sin2_¢"_ (2.31)k,, = kCN2 - cos2 ¢' _ k
N'_-2,,,,+_ 2N,_ J

and expand the resulting sine and cosine terms appearing in (2.24). This, however,

leads to a 12th order GIBC that is obviously impractical to employ analytically and

numerically. Instead, a more reasonable approach is to assume that the three layers

comprising the coating have varying refractive indices. In practice, the top layer

usually has a small refractive index whereas the bottom layer has a larger refractive

index. With this assumption we set

sin(ku,5,) _ ku, 5_ (2.32)

cos(ku151) _- 1 (2.33)

k_ = k_/N]- cos2¢' 1 sin2¢'_ (2.34)k N2-2--_2+ 2N_ )

(k52 • 2 )cos_,_ s,n _' _ 1 (2.36)

[ k52 • 2 ) k52sin_,_ _,n _' _ _'sins (2.35)
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and

(2.37)

Employing (2.32)-(2.37) into (2.23), after much tedious algebra we find that

a sixth order GIBC is required [28] to recover the resulting reflection coefficient.

This can be truncated to a second order GIBC with the pertinent constants for

H-polarization given by

1 k52]2N2 ) tan(NakSa)

-- jCle2 (Y2 2N_)N3tan(N3k53) (2.38a)

( 1)al =--_i£2e3 N2 2N2

+_l_t_.[(___

-b ¢12£2 (N2 2 1-_-) N3 ]¢_1 t an (N3 ]¢_3) (2.38b)



2O

a2 = je2e3(N_ - 1) (N2 -

k_2
1 k62]

- je2e3 (N2 - --2N2 k6, - je2e3(N_ - 1)--k ,2N2

k_2 tan(N3k63)+ J4 (u,_- _)_v_k_

+ jqe2 (N2 - 2N2)" k62 1 k62]2N_) tan(Nzkga)

1

- jqe2_-_2Na tan(N3kga)

Similarly, for E-polarization, we find

( 1)a; = #2.a (N_ - 1) N_ 2_V2 k6, tan(N3k63)

(2.38c)

1 k52]2N2 ) tan(N3kS3)

(2.39a)
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(a 1=-j#1#2_3 N2-_ I ) tan(N3k53)2N2

+ jtt_tt3 (N_- 1)k', tan [(N2- -- 1 k62] N3k53)2N2) tan(

- jl_ltt2 N2- N3kS1
(2.39b)

a_ = #2#a (N_ - 1) 1---_k6, tan(N3k_3)
2N2

+ tt2/_3 (N2 - 1__)2N25, tan(N3kS3)

_ _._(N_-_)(N_- --
i k52

1 k52]2N_) tan(N_kS3)

+ #1#3 tan [(N2 - -- l" ) k52] tan(NakS3)2N2

N2 k62
+ #1#3( 2 - 1)-_2tan(Nak63)

+ #_Nak6, tan[(N2---

k52

2N_) k52]+/a_(N_ - 1)NakS,_-_- 2

1 N (N2 _ 2__2 ) k6_ 1 k52]N32"_-2 t&n [ (N2 )- 2N_
tt1#2"_'_2 3 + _1#2

(2.39c)



CHAPTER III

NUMERICAL IMPLEMENTATION OF GIBC

In this chapter, we pursue a numerical implementation of the boundary condi-

tions (2.11) in a manner similar to that employed in conjunction with the standard

impedance boundary conditions (2.1)-(2.3) [29,30,31]. Of interest in this implemen-

tation is an examination of the accuracy of the second order GIBCs over that of

the SIBCs in simulating a dielectric coating over a metallic structure. So far, GIBCs

have been generated for simple planar surfaces such as a uniform coating on a ground

plane [5,17] and a resistive sheet [17,18]. Of practical interest, however, is the ap-

plication of these conditions to multilayer and inhomogeneous coatings and layers

forming arbitrarily curved surfaces. In this case, the GIBC as derived from the cor-

responding planar structure/surface is extended to the curved surface by postulation.

The accuracy of such an extension as a function of curvature is, of course, in question

and its examination for surfaces other than circular or elliptical requires a numerical

solution. For a closed surface, the GIBCs equivalently replace the entire effect of the

coating, thus, eliminating a need to introduce polarization currents within the dielec-

tric. This is an important advantage of the GIBCs leading to a simpler formulation

and a reduction of unknowns in the numerical implementation.

22
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3.1 Integral Equation Formulation

3.1.1 Hz-incidence

Consider the plane wave

H_ = e jk(x cos _b'+y sin ¢') (3.1)

incident upon a three-layer coated cylinder of arbitrary cross section as shown in

figure 3.1. For a two dimensional curved surface having large radius of curvature,

the GIBC given in (2.11) simplifies to

C

_:1 ' IJ'l

Figure 3.1: Illustration of a three-layer coated cylinder.

_ Za2 0 2
E, ao + a2 ZH, + Hz (3.2)

al k2al Os 2
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where we have also employed the relation

jZ OH.

E,- k Os (3.3)

We note that (3.2) is identical to that implied by (2.9) if we let E,: _ E,, E v --. E,_

and O/Ox ---, O/Os.

To compute the scattered field by the configuration in figure 3.1, a traditional

approach is to introduce the electric and magnetic surface equivalent currents (see

figure 3.2)

element

_th

element

_=_xR =,_E,

3=fixH=_H z

Figure 3.2: Equivalent current model and illustration of the discretization parame-

ters.

a

J = fix H = kHz = ._J, (3.4)
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M = Ex_=_E,=_M_ (3.5)

on the outer surface of the coating where E and H denote the total fields on C.

From (3.2) and (3.4)-(3.5) we then find

/_[z (_) ao + a2 a2 02 ]= + Z J,(_), _ e C (3.6)al k2al b-_s2

Enforcement of the GIBC, thus, eliminates one of the unknown current components.

In the case of a first order GIBC (SIBC) the relationship between Mz and J, is linear

as implied by (2.6). The appearance of the second derivative in (3.6) is therefore

attributed to the higher order condition and provides an added accuracy in the

simulation of the coating.

To construct an integral equation for the surface current Js, we now enforce the

condition

Hz = J, = H i + H,' (3.7)

on C where

H: = ----i- -4 J_,(v') gCo_(_p)d_' (3.8)

is the scattered field. In (3.8), H0(2) represents the zeroth order Hankel function of

the second kind and d/dn' denotes differentiation along the direction normal to C at

the integration point. Also,

P = I_-- ffl (3.9)

where _" and W are the two dimensional position vectors defining the observation and

integration points, respectively. The differential element de' denotes arc length along

the integration contour C.
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Substituting (3.8) into (3.7) and making use of (3.6) leads to the integral equation

1/cj,,(_,) [k ao + a2 . dI1_(v)=J,(_)+ _- L a-----7--- ;TW+ a2 02 ]ka, 072 H(°')(kP)d"" G C(3.10)

To solve this numerically we may discretize C into N straight segments, as shown in

figure 3.2, and assume a constant current distribution on each segment. By enforcing

(3.10) at the center of each of the N segments, we then obtain the discrete system

Iv=]= [z.,,][a,,] (3.xl)

for a solution of the current distribution J,. In (3.11), [Jst] is a column matrix with

J,e, g = 1,2, ..., N denoting the current on the gth element of C. [Vm] is the excitation

column matrix whose elements are given by

V,_ - H_(_m), m-- 1,2,...,N (3.12)

in which _,_ denotes the location of the observation/test point (see figure 3.2). Fi-

nally, [Z,,,t] is a square impedance matrix whose elements can be expressed as

z_,= 1+ zL,+ z_,+ z_, (3.13)

with

ZL t _ k ao + a2 --[ HO)(kP) dS', F=F,_ (3.14)
4 al act

Z_t J [ d H(2)(kp)ds', F= F,,, (3.15)
= --4actdn' o _

a2 /c 02z_, - 4ka, , _ '_H_J)(kp)ds'' _=_

a2 [ ^ (2) ],_+_ _"= F,, (3.16)4kat (_'" P)Hx (kp) ,,___ ,
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in which

_t = st& + nefie

denotes the center of the gth integration cell of width A. The vectors _t and fie

represent the unit tangent and unit normal, respectively, to the surface at D. It

is necessary to evaluate the integrals in (3.14) and (3.15) analytically for small r

and this can easily be accomplished after Z_t and Z_t are written in terms of local

coordinates. To do so, we define the observation vector _m as

-_,, = s,_._m + nmhm = s,_t._t + nmehe (3.17)

_' = s'._t + n'fie (3.18)

and by substituting these into (3.14) we obtain

Z_ t _ k ao + a2/'*-'='+÷ H(o2)(kv/fi + fi2)d _ (3.19)
4 al ,',t-,,_t-_

where fi = nm_ - nt . Similarly, for Z_t we have

Z2mt _ j d _°t-'-,,+a a H(=)(k_) da (3.20)
4 dfi ,-o,,,

The analytical expressions for the integrals in (3.19) and (3.20) have been developed

in [32] by using a small argument expansion of the Hankel function to O(p 4, p4 In p).

Once the current distribution has been determined from (3.11), the far zone fields

can be easily evaluated using (3.8). By introducing the large argument approximation

of the Hankel function into (3.8) we find

e-jkr _ NH:l,_..oo - -_ A eS_ _ J, te_k(''''+a°'e')
g----1

sin(kA&) [ ao + a2 a2 2]• kant fit" ÷ al _11_e
(3.21)
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(fit" _:) cos 4) + (fit- ?)) sin ¢

2_t = (kt'k)cosC+(_e.0)sin$ (3.22)

and (r, 8) denote the usual cylindrical coordinates of the far-zone observation point.

The echowidth of the structure is defined by

oH = 27rr IH*'[2
r ---, c_ ]H_] 2 (3.23)

and can be computed via (3.21).

3.1.2 E,-ineidenee

When the coated cylinder is illuminated by the plane wave

Eiz = ejk(xco60'+y*in¢ a')

the equation (2.11) simplifies to

E2 ""

(3.24)

, 02
ao + a2 ZHo a2 E, (3.25)

al k2(a_+ a_) 082

and we observe that this is the dual of (3.2) upon letting am _ a'm

(2.10). The equivalent currents are given by

and invoking

d = h x H = -_.H, = ._J, (3.26)

M = E x fi = -,_Ez = _M, (3.27)

From (3.25) we also have

Jz(v) = - ( a'°a_+ a'_ a'2 02 )+ k2a] _ss2 YM,(-_), _E C (3.28)
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which is dual to (3.6).

To construct an integral equation for the magnetic current M, we follow the same

procedure as that employed in the case of Hz-incidence. On C,

E, = - Mo = E_ + E; (3.29)

where E_ isthe scattered fieldgiven by

Introducing (3.28) into (3.30) and substituting into (3.29) leads to the integral equa-

tion

[( ) "11 Wo + a_ d a 2 H(o2)(kp)ds,,
-E;(_) = M,(-_) + 7 M,(_') k a_ - J-d--_n_ + ka'--_O_s'2

(3.31)

_-eC

This is dual to (3.10) and its numerical solution can be accomplished in a manner

parallel to that employed for (3.10). Also the far zone field is given by the dual of

(3.21).

3.2 Numerical Results

This section addresses the numerical accuracy of the high and low contrast second

order GIBCs in comparison with the SIBCs and other standard formulations. A

determination of the GIBC's range of validity by comparison with simulations based

on exact solutions or other validated numerical techniques is also presented.

Figure 3.3 presents a numerical comparison between the GIBC, SIBC and the

exact solution with TE-incidence on a uniformly coated circular cylinder. As seen,

the SIBC is quite accurate in simulating thin coatings. However, as the coating
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thicknessincreases,it no longer remainsaccurateand this is demonstratedin figures

3.3(b) and 3.3(c). We note that the low and high contrast GIBCs employed to

generatethe curves in figure 3.3 wereobtained by setting _51= 63= 0.

Figures 3.4 and 3.5 show a comparison of results basedon the low and high

GIBCs for different permitivities and coating thicknesses. In particular, figure 3.4

includesdata correspondingto constant thickness,singlecoatings. As expected,the

low contrast GIBC showsa better agreementwith the exact solution in the case

of low contrast material and the high contrast GIBC is more accurate for higher

permitivities. The curvesin figure 3.5 correspondto constant permittivity coatings

and it is now seenthat the high contrast GIBC is moreaccurateover the low contrast

GIBC asthe thicknessof the coating is increased.Data obtained from numeroustests

suggestthat the agreementbetween the low contrast GIBC and exact solutions is

acceptablefor v/_ 6 < 0.15A with H-polarization and for x/7 6 < 0.20A with E-

polarization. The range of validity of the high contrast GIBC is unfortunately a

function of the refractive index and thickness as depicted by the plot in figure 3.6.

The aforementioned conclusions on the r._nge of validity of the high and low

contrast GIBCs were based on data for a single uniform coating on a circular cylinder

of radius 1A. Of course, other parameters such as the radius of the cylinder and

homogeneity of the coating are of importance. Although these were not accounted

for in this preliminary study, some general suggestions can be noted based on our

experience. In particular, when the relative permeability is not unity, it is reasonable

to assume that the range of validity of the conditions will be between those stated for

the E and H polarizations. Also, when the conditions are applied to model multiple

layer coatings, an average permittivity can be computed before making use of the

criteria given above. Representative scattering patterns from a multilayer cylinder
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aregiven in figure 3.7and asseen,the agreementwith correspondingnumericaldata

[32] is good.

Sincethe presentedGIBCs werederived on the assumptionof a planar surface,

it is of interest to examine their accuracyin simulating surfaceshaving small radii

of curvature and/or discontinuities in the first derivative. With regard to the first

issue,the conditions havebeenemployedto model smooth coatedcylinders down to

at least A/4 in radius without any appreciabledeterioration of their accuracy.The

secondis addressedby using a secondorder GIBC to simulate a uniformly coated

ogival cylinder. Scattering data basedon the low and high contrast GIBC areshown

in figure 3.8 and comparedwith data basedon a finite element boundary integral

[33] method. We note that the accuracyof the GIBC formulation tends to decrease

with increasingeccentricity of the ogive. In general, though, the agreementbetween

the exact and GIBC-based solutions remains good for tip angles(c_)greater than

60degrees.However,the accuracyof the GIBC simulation can be greatly improved

by replacing the sharp tip of the ogive with a rounded one (having radius of about

0.01,_)and increasingthe sampling around the tip. This is demonstrated in figures

3.9 and 3.10 for tip anglesof 36° and 30°, respectively. The agreementbetweenthe

FEM and the GIBC solutions tends to deteriorate as the tip angle goes below 30

degrees.

The results presentedup to this point correspondto uniform coatings. As noted

earlier, though, the GIBCs canbeemployedto simulate coatingsof varying thickness

and layeredmaterial composition. Figure 3.11 presents data for an ogive coated with

a constant thickness coating having non- uniform e and/or #.
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3.3 Summary

Second order generalized impedance boundary conditions (GIBCs) were used

to derive integral equations for scattering by two-dimensional coated structures'of

arbitrary cross=section and implemented using a moment method procedure. Results

based on this numerical implementation were then compared with corresponding data

based on an exact solution or from other validated computer codes. It was found that

the proposed second order boundary conditions provide an improved simulation of the

coating in comparison with the traditional standard impedance boundary condition

and guidelines were given for their region of validity. The primary reason for the

improved simulation is because the second order GIBC includes the effect of the

polarization current components normal to the coating in addition to the tangential

ones. In general, the presence of edges deteriorates the accuracy of the simulation

particularly for thicker coatings. This is due to the inherent non-uniqueness of these

boundary conditions at abrupt terminations, a situation which can only be remedied

by introducing additional field constraints at the terminations [51,52]. The second

order GIBCs were found to be equally effective in simulating non- planar coatings

having laterally non-uniform but smoothly varying material properties or thickness.
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CHAPTER IV

HIGH FREQUENCY SCATTERING BY A

SMOOTH COATED CONVEX CYLINDER

SIMULATED BY APPROXIMATE

BOUNDARY CONDITIONS

This chapter deals with the subject of non-specular scattering mechanisms aris-

ing due to creeping waves and curved surface diffraction. A rigorous UTD solution

is developed here for the diffraction by a coated convex cylinder simulated with

the approximate boundary conditions (SIBCs and GIBCs). In addition, a uniform

asymptotic solution is obtained which remains valid when the observation point is in

the close vicinity of the cylinder. One of the objectives of this exercise is to demon-

strate the use of the approximate boundary conditions, presented in chapter two,

for the development of analytical solutions for curved surfaces. These asymptotic

solutions are then validated using the eigenfunction solution for a coated circular

cylinder and using the numerical data based on the integral equation formulation

developed in chapter three for a general convex cylinder.

The problem of scattering by a smooth convex impedance cylinder has received

much attention. Wang [34,35] presented ray-optical solutions for the impedance and

coated cylinders, ttis results are valid only in the deep lit and shadow regions and do

not apply to the case where the observation point is in the transition region. Wait
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and Conda [36,37] developed a solution which is valid in the transition region and

for observation points on and off the surface. However, as pointed out by Pathak

[38] it does not uniformly reduce to the ray solution [39,40] exterior to the transition

regions. Also, it is not valid on the portion of the surface in the transition region

and these limitations were the primary motivation in Pathak's work [38] for the

perfectly conducting convex cylinder. Recently, Kim and Wang [41] presented a

solution applicable to a coated cylinder that remained valid in the transition region.

They employed a heuristic approach to obtain the numerical values of the resulting

transition integral applicable to a coated cylinder. Their solution is uniform but is

not applicable in the close vicinity of the cylinder.

The UTD solution to be presented here parallels that given by Pathak [38] for the

circular perfectly conducting cylinder. However, in the case of the coated cylinder

the resulting UTD expressions are in terms of Fock-type integrals whose efficient

evaluation is of primary interest. In the following, we first present the eigenfunction

solution based on the second order GIBC simulation of a circular coated cylinder.

By employing Watson's transformation this is written in integral form which is then

cast in a ray representation. The ray solution is subsequently generalized to the case

of a general convex cylinder. Finally, the evaluation of the Fock-type integrals is

discussed and some results are presented which validate the accuracy of the GIBC

ray solutions.

4.1 Eigenfunction and Integral Representation

Before considering the problem of scattering by a convex impedance suface, it is

instructive to first develop a solution for the diffraction by the canonical geometry

of a circular impedance cylinder. Generalizations to any convex surface can then be
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madeon the basisof the expressionsobtained for the circular cylinder.

Considerthe planewave

tt i _ Uo ejkz -- UoeJkaeos¢ (4:1)

incident on the coated circular cylinder shown in figure 4.1a, where uo is the ampli-

tude of the wave and u i denotes either the Ez or H_ component of the incident field.

We propose to simulate the circular cylinder with an equivalent one (see figure 4. lb)

satisfying the GIBCs. This implies that (2.11) takes the form

for H,-incidence or

E_ = (a2 + aO) ZHz a2Z O_Hz (4.2)
al k2b2al 0¢ 2

E, - (as + ao) ZH¢, - a'2 02E" (4.3)
al k_b2(a_ + alo) 0¢ 2

¢in the case of E,-incidence. In the above, a,,, and a,,, were derived in chapter two for

the low and high contrast GIBCs.

An eigenfunction representation of the total field in the presence of the cylinder

can be generally written as

ut = __, j" [Jn(kp) + A,_H(,,2}(kp)] e -j'_' (4.4)
n_.--O0

where J,,(.) is the Bessel function of order n and H_2)(.) denotes the nth order Hankel

function of the second kind. To find the constants A,_ we enforce the GIBC given by

(4.2) or (4.3) at p = b. This yields

J'(kb)+O(n)Jn(kb)

A_, = H(2),(kb) + Q(n)H(_)(kb) (4.5)

in which the prime denotes differentiation with respect to the Bessel or Hankel func-
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Figure 4.1: (a) Coated circular cylinder (b) equivalent coated cylinder simulated with
GIBCs.
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tion argument,

Q(n) =

a !_-J k q

I = O, Q(n) reduces toand when a_ = a 2

Q(") = Q = / -j_ = -J,7

t _j_ •1

for Hz-incidence

for E,-incidence

(4.6)

for Hz-incidence

for Ez-incidence

(4.7)

Since (4.4) is a slowly convergent series, especially for large kb, our objective is

to obtain asymptotic representations for u t suitable for practical applications. We,

therefore, seek uniform expressions for the total field in the lit, shadow and transition

regions. Such expressions should also recover the well known geometrical optics field,

where applicable. To obtain a ray representation of (4.4) in conjunction with (4.6) we

must first recast u t in integral form. Employing the usual Watson's transformation

[6] and noting that Q(n) = Q(-n), we find [38]

U t _._ u 1 -Jr U 2

where

or

and

/_,_ Jt(kb) + Q(,,)J,(kb) ,,_,,, ,],"4v;'----_ 1-12," tc e-JVCdvu, = Uo J_(kp) - H_2) (kb) + Q(v)H_2)(kb) _' P)J

u2 = Uo f__ J_(kp) - H(_),(kb) + Q(v)H( )(kb)

(4.8a)

(4.sb)
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in which

e-Jr(2'r+e) + e-J_(2_-¢)

1 --e -j2vr
d12

(4.9)

7r

= I¢1- 7 (4.10)

and Q(u) is given by (4.6) upon letting n _ u. The field component ul, defined

above, includes the geometrical optics and dominant surface diffraction contributions

whereas u2 denotes the creeping waves which circulate around the cylinder more than

once. We are interested in an asymptotic evaluation of ul and to do this we must

separately consider each of the space regions illustrated in figure 4.2.

4.2 Field in the Deep Lit and Shadow Regions

In the deep lit region, the geometrical optics incident and reflected rays represent

an accurate first-order high-frequency approximation of the total field. The geomet-

rical optics field can be extracted from ul upon performing an asymptotic evaluation

of (4.8) yielding [42]

,f P e -jkt (4.11)uC°(PL) .._ u'(PL) + u'(QR)R,,hU
V

in which

, , 0i , 0 i
R,_ a°-alc°s +%c°s2 (E, - incidence) (4.12a)

a" + at cos0i + 4 cos_0i

ao -- al cosO i + as cos 2 0 i

Rh _ Oi Oi (H, -incidence) (4.12b)ao -at- al cos + a2 cos 2

are the reflection coefficients associated with the coating [5]. The parameter 0 i is

illustrated in figure 4.3 and e is the distance (must be large) from the surface reflection
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Figure 4.2: Different regions associated with the plane wave scattering from a smooth
convex cylinder.

point QR to the observation point PL. Finally, _ is the reflected ray caustic distance

and for a convex cylinder it is given by

= pg(QR)cosO;
2 (4.13)

pg(Qn) is the radius of curvature of the surface at QR and is equal to b for the circular

cylinder.

For observations in the deep shadow region, a residue series representation of ux

is more appropriate. From (4.8), we obtain

4 oo H(2)(ko_eJ_,_(_,-_)

,...z [ _'"- I] 1__41ut = -Uo-_ (_) o 2)'
= g,,,,,(kb)_ H_ (kb) + Q(u)g(,2)(kb
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Figure 4.3: Reflected ray path.

where Um are the zeros of the transcendental equation

(2), (4.15)H,,,,, (kb) + Q(u,,)H_)(kb) = 0

Obviously, (4.14) does not provide a ray-picture interpretation of the creeping-wave

diffraction which is desirable for generalizations to non- circular cylinders. To recast

(4.14) in a form compatible with the Keller type GTD format, the Debye approxi-

mation must be employed for the Hankel function for kp >> lUml. This yields

u_( P,) ,._ ui(Qz)T,,heS_-_s"
(4.16)

where

T.,h =- _. 79m(Q,).e -j_'°. Z_m(Q2) (4.17)
m_l
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is the corresponding diffraction coefficient and for the circular cylinder

DIn(Q,) = z).,(Q:)

I_/_ 4 e3_ J= kTb (:) o {H(:)(kb)+H.,. (kb)_ Q(v)H(.:)( kb) }.=.m

with 0 as defined in figure 4.4.

(4_18)
J.
2

P$

Q2

Y

p xI

I
I

I

I
I

I
I

I
I

Figure 4.4: Propagation ray paths in the shadow region,

A generalization of (4.16)-(4.18) for convex cylinders is now possible by making

the replacements

b--, pg(q,,2) (4.19)
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ft'(e2) u=(t')dt'] (4.20)e -5_'_° _ exp-JJt'(Q1) pg(t')

Consequently, the attachment coefficient D_(Qx) is no longer equal to the launching

coefficient D._(Q2).

4.3 Field in the Transition Region

The geometrical optics and creeping wave solutions presented above are not valid

in the transition region close to the shadow boundaries as illustrated in figure 4.2.

New uniform expressions are, therefore, required to overcome this limitation. These

can be derived following the procedure adopted by Pathak [38] for a perfectly con-

ducting convex cylinder. For the lit region we find

u,(PL) _ C(PL) + u'(Qn)n=,hi_--_--_e-'kt (4.21)

where R=,h is now given by

(j { ]R,,h = - exp -j--i-_/ [2z'v_ {1 - F(2kecos 2 0_)} + G(z',q) (4.22)

j_
F(x) = 2jv/xe -j* e-J*2dx (4.23)

x' = -2m( Q a) cos 0 i (4.24)

and

1

= pg(Qn) cos 0i (4.26)
2

F(x) is the UTD transition function [43] and G(x',q)is defined by

e-J_ f__o V'(T)--q(T)V(',) e_J**dTa(_',q)- V'_ o+W_(_') q(r)W_('_) (4.27)
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in which

q(r) = mQ(u) (4.28)

whereas V(r) and Wta(r) are the Fock-type Airy functions [44]

2jV(r) = W_(r)- W2(r) (4.29)

1 /p ert_t3/3dt (4.30)

The contour Ft runs from ooe-J_ to oo - je and F2 is the complex conjugate of F1.

We remark that in the case of an SIBC simulation, q(r) becomes a constant.

For the shadow region, we have

i e-Jk8

u,(P,) _ u (Q,)To,h -_ (4.31)

where the diffraction coefficient Ta,h is now redefined as

Ts,h = -¢rn(Q1)m(Q2) e- {1 - F(ksa)} + a(z,q) (4.32)

in which

= f'(Q2) rn(t')x dt' (4.33)
Jt'(Ql) pa(t')

and

= [¢(Oa)
t Je(Q,) dt' (4.34)

x 2

5 = (4.35)
2m(Q1)m(Q2)

As is usually the case, (4.21)-(4.35) were first derived for the circular cylinder

and were subsequently generalized for non-circular convex cylinders.
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4.4 Field in the Close Vicinity of the Convex Cylinder

In all of the above derivations we have assumed that £ is large. Consequently, the

given expressions are not adequate for field computations very close to the cylinder.

In this case, it is possible to obtain a suitable approximation of the integral (4.8)

by replacing the Hankel and Bessel functions in terms of Airy integrals and then

employing a Taylor series expansions for these integrals.

Following a procedure similar to the one given in [38], the resulting expressions

for an arbitrary smooth convex cylinder are

5 (_l)_,(jhz,),_ +eul(P) _, ui(PN) e -jh'' - E n!

when PN is in the lit region, and

)}]{A,(z')- A2(z'

pg(Pt,)] _
u,(P) _. u'(Q,)e -jk' ._j {A,(z)- A2(z)}

when PN is in the shadow region. In (4.36) and (4.37)

"h2 ' ha h4 "'D' -_A,(D) = g,(D) + 3_.g,(D) - -_.g,(D) - _.g,( ) -j4 .g',(D)

h a h 4 h 5
• t D IIA_(D) = hg_(D)+ 3_a( ) - 2_g_(D)- _a(D)

1 /_'_ e-JDrg_(D) - V_ _ W_(r) -- q--_)W2(r)dr

1 /_" q(r)e-JD'r drg_(D) = -_ _ W_(T)- q(T)W_(_)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

z' = --m(PN)cosOi (4.42)

for PN in the lit region and

(4.43)
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for P.v in the shadow region

t'(PN)
t = Jt,(Q,) dt' (4.44)

h- kd(Pg) (4.45)
_(PN)

d(Pu) = p- Pg(PN) (4.46)

The points P and PN in the lit and shadow regions are illustrated in figure 4.5. We

remark that when the cylinder's surface obeys the SIBC, gl,2(D) simplify to

(Field Point)

d

Q
1

P P
N N

(In Shadow Zone) (In Lit Zone)

(Field Point)

., P

Figure 4.5: Projection of the field point P in the direction normal to the surface at

PN.
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gI(D) _..., g(D) = _._ /_ "° e -jD_"oow (T) -
dr (4.47)

g2(D) _ mQg(D) (4.48)

In the case of slowly attenuating creeping and/or surface waves (4.36) is not

adequate and an improved result may be obtained by adding (4.36) and (4.37) with

t > 7rb (in case of a circular cylinder of radius b). Clearly, the addition of (4.37)

corresponds to the contribution of the creeping wave that has travelled the minimum

distance on the cylinder's surface to reach PN. The contribution of those creeping

waves that travelled more than once around the cylinder is given by u2 and could be

added to ul if greater accuracy is required.

The functions gx(D), g2(D) and G(x, q) are Fock-type integrals that are formally

the Fourier transform of a slowly varying factor consisting of a quotient of terms

containing Airy functions and their derivatives. A computationally efficient scheme

was proposed by Pearson [45] for the evaluation of these integrals. The scheme is an

extension of the Fourier trapezoidal rule devised by Tuck [46] to treat the rotated-ray

exponential behavior occuring in the integrals. The sampling frequency used in the

computation is dictated by the slowly varying Airy-function factor in the integrands.

Sufficiently accurate results have been obtained for both lossy and non-lossy coatings

on a perfectly conducting cylinder using this scheme.

4.5 Numerical Results

The UTD expressions derived in the previous sections provide a complete set of

equations for the computation of the total field in all regions of interest. In this

section, we present some calculated data which validate the accuracy of the derived

expressions by comparison with data based on the moment method and eigenfunction
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P (p,_)

Y

Figure 4.6: Elliptical cylinder configuration.

To show the validity of the UTD solution in the case of a convex cylinder, a

special case of an elliptical cylinder (see figure 4.6) is considered in figure 4.7. Data

based on the moment method solution are compared with the one obtained from the

UTD solution in conjunction with the second order low and high contrast boundary

conditions. Figure 4.8 verifies the asymptotic solution, developed for the field point in

the close vicinity of a convex cylinder. We remark, however, that the approximations

used for the Hankel functions in the derivation of (4.36) and (4.37) become less

accurate for some values of e_ and #r associated with lossless coatings, and this can

be avoided by using more accurate approximations for the Hankel functions. Finally,
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figure 4.9 demonstrates the use of GIBC in simulating multilayer coatings by simply

!redefining the material constants a,_ and a,_ as discussed in [47,48].

A difficulty in implementing the expressions derived in this work was the evalua-

tion of the Fock-type integrals G(x, q), gl(D) and g2(D) as well as the determination

of the zeros corresponding to (4.15). The Fock- type integrals were evaluated by em-

ploying the method described in [45] and the zeros of (4.15) were determined using

the routine given in [49].

4.6 Summary

Rigorous ray solutions of the scattered fields were presented for a coated convex

cylinder. These were developed in the context of the uniform geometrical theory

of diffraction and specific expressions were given for the scattered fields in the lit,

shadow and transition regions as well as for observations in the near vicinity of the

cylinder. That is, UTD expressions were derived for all regions exterior to the coated

cylinder. These are suited for engineering computations and are given in terms of the

generalized Pekeris or Fock-type functions whose evaluation was efficiently pe_'formed

via the Fourier Trapezoidal rule suggested by Pearson [45].

In comparison to the solution given by Kim and Wang [41], the ray representations

given here are based on a second order generalized impedance boundary conditions

which permits the simulation of thin multilayered coating as demonstrated in the

included examples. Also, in our implementation of the transition fields we employed

a rigorous rather than a heuristic evaluation of the Fock-type integrals. Further, we

have presented accurate field representations for observations on or near the vicinity

of the coated cylinder and these can also be used for computing the radiated fields

by a source or an aperture on the surface of the convex cylinder.



58

10.0 - • i i , ' '

'0

0
h-

0.0

-10.0

-20.0

.30.0

-aO.0
0.0

_ Moment Method(GIBC)LrTD(GIBC)

30.0 60.0 90.0 120.0 150.0
180.0

Observation Angle, (deg)

"O

"O

tz.

o

I0.0 I I

(a)

! I I

0.0

-10.0

-20.0

-30.0
------ Motmm Method(omc)

.........UTD (Gmc)

! . t . I , I
-40.0 '

0.0 30.0 60.0 90.0 120.0
80.0

Observation Angle ¢ (dog)

0_)

Figure 4.7: Bistatic scattering pattern for an elliptical cylinder having a = 2:X, b =

1_, p = 5_, ¢_ = 0 (a) E- polarization, e_ = 4, #, = 1, 6 = 0.07_ (b) H-

polarization, ¢_ = 8, _ = 1, 5 = 0.2X.
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3.05A, ¢i = 0 (a) E-polarization, e, = 4, _, = 1, 6 = 0.07)_ (b) H-

polarization, e, = 8, #_ = 1, 6 = 0.2A.
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Figure 4.9: Bistatic scattering pattern of a three-layer coated circular cylinder having

b = 3_, ¢, = 0, _1 = 3-j0.1, _2 = 4-j0.3, _3 = 7-jl.5,/_,l = #,2 =

#,3 = 1, _51 = 0.01A, 62 = 0.02A, (53 = 0.03_ (a) H-polarization, p = 5)_

(b) E- polarization, p = 3.05A.



CHAPTER V

AN APPROXIMATE SOLUTION FOR

SCATTERING BY AN IMPEDANCE WEDGE

AT SKEW INCIDENCE

So far, in the previous chapters we developed and validated diffraction coefficients

for smooth coated convex cylinders simulated with the approximate boundary condi-

tions (SIBCs and GIBCs). These diffraction coefficients can be utilized to study the

non-specular scattering mechanisms caused by creeping waves and surface diffracted

waves. In this chapter we will consider other sources of non-specular electromagnetic

scattering, namely those associated with diffraction from first derivative discontinu-

ities as in the case of edges and wedges coated with lossy material.

A normal incidence solution for a wedge with arbitrary included angle and hav-

ing $IBCs imposed on its faces is already available [11]. However, the diffraction

coefficient obtained from this solution is only applicable to two dimensional struc-

t.ures and for practical applications it is necessary to derive coefficients applicable to

three dimensional structures. This can be accomplished by solving the impedance

wedge problem with a plane wave excitation at skew angles. Unfortunately, the exact

solution to this problem has only been obtained for a few wedge angles. In particu-

lar, solutions are possible only for wedges having included angles of 0 (half- plane)

[12,13,14,15,19], rr/2 (with one face perfectly conducting) [14,15,16,20], 7r and 3,-r/2

61
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(with one faceperfectly conducting) [14,15,19].The main difficulty in obtaining the

skewincidencesolution for the diffraction by an impedance(SIBC) wedgeis the lack

of techniquesto solve the resulting four coupledfunctional differenceequations. For

the specific wedgesmentionedabovethe four differenceequations can be decoupled

yielding the solution given in the referencesbut their decoupling for other wedge

angleshassofar eludedresearchers.

In this chapter, an approximate solution is developedfor an impedancewedgeat

skew incidence using Maliuzhinets' method [11]. This solution exactly recovers the

known ones for an impedance half plane and the normal incidence wedge solution.

A major effort is devoted to the validation of the approximate solution and for this

purpose a moment method code was developed for computing the scattering by an

impedance polygonal cylinder excited at skew incidence. The formulation forming

the basis of this code is deferred until chapter six.

5.1 Modified Form of the SIBCs

Consider an impedance wedge geometry shown in figure 5.1 having an external

angle of 2¢ = nTr with surface impedances r/+Z and r/_Z at ¢ = +(I) and ¢ = -(I),

respectively. This impedance (SIBC) wedge is illuminated by a plane wave impinging

from the direction

= -_ sin/30 cos ¢' - 9 sin flo sin ¢' + _ cos flo (5.1)

where I¢'1 <- (b and flo represents the skewness angle and is equal to r/2 when the

wave is incident normal to the wedge. The z components of the incident field are of

the form

E_ = eze -ik_'_ ZH_ = h_e -jk_'_ (5.2)
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v

_+ , ,,

x

(II = - (l)

Figure 5.1: Impedance wedge geometry.

with Z being the intrinsic free space impedance.

We observe that the total field must have the same z dependence as the incident

field because the wedge is infinite along the z direction and the SIBCs are independent

of z. Therefore, from Maxwell's equations

1 {cosfloOE_ l_O(ZHz)}E° - jksin _ /3° _ +pO¢
(5.3)

E, - jk sin 2 _o cos _3Op 06 (ZHz) (5.4)

ZH._I{ _ IOEz} (5.5)jksin2 3° coS¢3o (ZH.) p 0¢

I {OE, flol O (zH_)} (5.6)ZH_-jksin_flo --_-p +cos pO0

and these can be used to rewrite the SIBCs in a more convenient form not involving

the z components of the electric and magnetic field. Beginning with the usual forms
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of the SIBCs given in terms of the tangential fields,we have

Ep = _q+ZH, at ¢ = H-O (5.7)

E, = =I:_+ZH, at ¢ = ±_ (5.8)

Differentiating these with respect to z we obtain (tangential differentiation of the

boundary conditions is allowed)

OE_.._Z = OH, (5.9)
Oz _rt+Z Oz

= +_z (5.10)

Alternatively on multiplying (5.7) with p and then differentiating (5.7) and (5.8)

with respect to p yields

ff-_(pE, ) 0= _rl+Z-_p (pg, ) (5.11)

OE, OHp (5.12)
O---p"= =}=rt:_Z Op

and these are of course equivalent to the previous two sets.

Other alternative boundary conditions can be obtained by combining the sets

(5.9/-(5.10) and (5.11)-(5.12). In particular, by dividing (5.11) with p and adding

the resulting equation to (5.10) we get

!
; k oz ] T +ZpH,

where we have also used the divergence condition

_.-__ 1 0 IOE_
Op(pEp). + -_ + _ -p o¢P

(5.13)

OEz
-o (5.14)

Oz
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However, (5.13) can be simplified further upon noting that

OHp = jkYE¢_ (5.15)op)

when this is introduced in (5.13) along with (5.7) we obtain the condition

OE_

Ock :k jrl+kpE _ + Ep = 0 (5.16)

which is just another form of the SIBC not involving any of the z field components.

Proceeding in a similar manner, we can combine (5.9) and (5.12) to obtain

OHm
+ jlkpH_ + Hp = 0 (5.17)

0¢ ,7+

which is obviously the dual of (5.16). As we shall see in the next section, equation

(5.16) and (5.17) are the most convenient forms of the SIBCs necessary for the

application of MaJiuzhinets' method in the case of skew incidence.

5.2 Derivation of the Functional Difference Equations

To apply Maliuzhinets' method [11] for the solution of the impedance wedge

diffracted fields we begin by first representing the total fields in the presence of the

wedge as

e -j kz cos t3o

E_ - 2_rj f eJkp'inO°c°'_S_(c_ + ¢)da (5.18)
,7

e-Jkz co* _o

ZHz - 2_rj / eJkosin_3°c°SaSh(Ot + ¢)da (5.19)

These are complete spectral representations where 7 is the Sommerfeld contour shown

in figure 5.2 and ,-q_,h are unknown spectral functions.

The goal in the subsequent steps is the explicit determination of S_,h on the basis

of the governing Maxwell's equations and the boundary conditions (5.16)-(5.17). On
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-_r \ 0 I

Figure 5.2: Sommerfeld contour 3' in the complex a plane.

enforcing the boundary conditions (5.16)- (5.17) at ¢ = -t--_ along with (5.3)-(5.6)

we obtain

/ e jkpsin_3°c°sa (sin
-y

c_-t-
1

) {cos 30 sin aSh(a rk ,_)r/+ sin 3o

+ cos,_s_(_ ± _,)) = 0 (5.20)

/ e "Tkpsin3°c°sa (SiR r/± ) {cos3osinaS_(a+q_)si-n-3o

-cos _Sh(c_+ I,)} = 0 (5.21)

These are four coupled integral equations and we observe that S,,h are decoupled

when cos 3° = 0 corresponding to the case of normal incidence. Note that the top

and bottom face impedances 7/+ appear in the dual factor multiplying the integrands

and this is a consequence of the new SIBCs (5.16)-(5.17). According to Maliuzhinets

[11], the necessary and sufficient condition to satisfy (5.20) and (5.21) is that the
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integrandsbe even functions of a. A mathematical statement of this is

A_(a) {cos_S_(_ + ¢) + cos_osin_Sh(_+ ¢)} =

cos _(-_ 4- @) - cos 13osin aSh(--a + ffP) (5.22)

A_(a) {cos¢3osinaS,(a 4-¢) - cosaSh(a 4-¢)} =

- cosSosin _S,(-_ 4-V)- cos_Sh(-_ 4-¢) (5.23)

where

sin a 4- sin 0±
•,h (5.24)

A_h (a) = _ sin a 4- sin 0._,h

with

sin0_ - 1 sin0 F - 77+ (5.25)
7?4.sin/3o sin/3o

Equations (5.22) and (5.23) are functional difference equations which are coupled

and cannot in general be solved for S.,h(a) in a closed form. In the case of normal

incidence (cos/30 = 0), the difference equations take the form

(5.26)

A_h(o)Sh(a + ¢) = Sh(-a + ¢) (5.27)

and each of these difference equations can then be solved independently via Mali-

uzhinets' method. Equations (5.22) and (5.23) can also be decoupled for some special

cases by employing certain suitable linear combinations of the spectral functions S_

and Sh [15]. In particular, separation can be achieved for

(a) a half plane (_ = a')

(b) a two part plane (_ = r/2)

(c) a right angled wedge with one face perfectly conducting (_ = 3r/4 and

_ = 7r/4).
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Approximate Solution of the Difference Equations

In this section, we shall consider approximate solutions of (5.22)-(5.23) for ar-

bitrary impedance wedge angles and surface impedances 77+. As mentioned earlier,

these are coupled and cannot be separated for an arbitrary wedge angle • (@ <_ 7r)

and /30 (0 < /30 _< _r/2). However, approximate solutions can be obtained which

will be shown to be of acceptable accuracy over a certain angular sector exterior to

the wedge. In the following, three approximate solutions to the difference equations

(5.22)-(5.23) are presented whose combined validity range encloses the entire region

of interest. Since most wedges of practical interest have _'/2 < & _< _r, we shall

restrict our study to this region.

5.3.1 Separation Method I

For this separation method we shall assume that ¢ is near _r (¢ = _" being the

half plane case) and at the same time/3o is close to 7r/2 (/30 -- _'/2 being the normal

incidence case). The resulting solution for S_,h is expected to be most accurate for

wedges having ¢ _ _r and/or/3° _ _r/2. We also expect that the approximation will

recover the known half plane solution and that at normal incidence with arbitrary

wedge angle. On our way to obtain such an approximate solution, we first divide

(5.22) and (5.23) by cos a giving

A_(a) {cos _'o tan aSa(a 4- _) + S,(a 4- _)} =

- cos/3o tan ash (--a 4- 6p) + S_ (--o_ 4- ¢) (5.28)

and

A_(a) {cos/3o tan aS,(c_ 4- _) - Sh(_ 4- _)} =

- cos/3o tan aS,(-a 4- _) - Sh(--a + _) (5.29)
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We now have two options in proceeding with the decoupling of (5.28) and (5.29). We

may, for example, opt to satisfy the boundary conditions on the upper face (ff = +_)

exactly and only approximately on the lower face (¢ = -_). Alternatively, we may

instead choose to satisfy the boundary conditions on the lower face of the wedge

exactly and only approximately on the upper face. Proceeding with the first option,

we introduce

(5.30)

t2(_ + _) = cosflotan_S_(_ + 6p) - Sh(a + 6p) (5.31)

Then

tl(a - @) = cos/3o tan(a- 2@)Sh(c_- @) + S_(a- (I,) (5.32)

t2(a - _) = cos flo tan(v_ - 2_)S_(_ - _) - Sh(_ -- 0) (5.33)

and on noting that

cos/3otan(c_-2O) =cos/3otanc_-cos/3otan2O{tan(c_-2O) tanc_+l} (5.34)

we can rewrite (5.32) and (5.33) as

t,(a - ¢) - cos flo tan aSh(_ -- _) + S¢(a -- ¢_) + bl(a) (5.35)

t2(_- _) = cos/3o tan aS_(a- 6#) -- Sh(_ -- 6p) + b2(_) (5.36)

where

b,,2(a)=--cos/3otan2O{tan(o_--2O)tanoL+ 1} Sh,_(c_--fP) (5.37)
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Substituting now (5.30), (5.31), (5.35) and (5.36) into (5.28) and (5.29) yields the

new difference equations

for the upper face and

A+h(a)tl,2(a + ¢) = tl,2(--a + 0)

A[.h(a)t,,2(a -- 0) = tLz(-a -- 0) + p,.2(a)

for the lower face of the wedge with

(5 s)

(5.39)

p,a(a) = A_h(a)b,.2(a ) - bl.2(-c_) (5.40)

To decouple tl and t2 on the basis of (5.39) and (5.40) it is necessary that we

set pl,2(a) = 0 and this approximation affects primarily the boundary conditions

imposed on the lower impedance wedge face. To observe this let us replace a with

_+O in (5.38) and with a-O in (5.39). When the resulting equations are subtracted,

we obtain

A+h(a + O)tl,_(a + 20) -- A;h(a-- O)t,,2(a -- 20) = /x,_(a) (5.41)

where

2 cos/3o sin 20

f,,2(a) = -Px,2(a - 0) = cos 20 + cos 40 cos 2a + sin 40 sin 2a A*-'h(a - 0)

•Sh,_(a - 20) - 2cos/3o sin2iaSh,,(_a)_l_ (5.42)cos 2¢ + cos

For f_,2(a) = 0, the two difference equations (5.41) become linear first order homoge-

neous functional difference equations and can be solved via Maliuzhinets' method for

t_ and t2. It is interesting to note that fl,2(a) is identically zero when cos _o sin 20 =

0. Thus on setting f_,2(a) = 0, the resulting solution for tl,2(a) is the exact one for

the cases where
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(a) _3o = zr/2 (normal incidence with arbitrary wedge angle)

(b) • = r (half plane with arbitrary 3°)

(c) • = r/2 (two part plane with arbitrary 3o).

Therefore, any solution of (5.41), based on the assumption that cos/3o sin20 _ 0,

will exactly recover all three cases mentioned above.

Once t,,2(a) are found from a solution of (5.41), the corresponding S,.h(a) spectra

are obtained by inverting (5.30) and (5.31). First, we rewrite these as

_ sin(a- 0)

t,(a) = cos_oo-/_ - 0)sh(a) + s,(a) (5.43)

_ sin(a - 0) S,(a) - Sh(a) (5.44)
t_(a) = cosZO¢o--_(__ o1

and from these we readily find that

cos(a - _) {cos(a-O)t,(a)+cOSZosin(a-O)t_(c_)} (5.45)
S,(a) = 1 -sin 23osin2(a - O)

cos(a-B) {cOS_osin(a-O)tx(a)- cos(a- _)t2(a)} (5.46)
Sh(a) = 1 - sin _ 30 sin2(a - _)

From Maliuzhinets [11], a solution of (5.41), with fl,2(a) _ 0, which is free of

poles and zeros in the strip [Re(a)[ <_ • is the auxiliary Maliuzhinets' function

@(a, 0+_,a,0/,h) defined by the product

+ ( )¢ (a,o_,_,o_,_)= _,_ _+ • + _ _,_ _.+ o;,_

()( _r O+ _,t a-O+ -- O_h (5.47)

where q_,(a) is the Maliuzhinets' function for which simple analytic expressions are

given in [50]. For large Jim(a)[, this function has the property

I/m(,_)l'_ (5.4s)lim gl,_(a) = 0 exp
It-q,_)l--'_ 80 J
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where O(.) is the Landau symbol. We may thus express tl,2(a) as

+ 0-, _(a, 0,,h, ,,h)
tl,2(a) = al,2La}___-'_---'_,_

"rkW _ Ve,h_ re,hi

where _rl,2(a) satisfies the equation

a,,2(a + ¢) = al,2(-_ + ¢)

(5.49)

(5.50)

and from (5.38) and (5.39) its presence is allowable since

AL(_)*(a ± ¢) = ,(-a ± ¢) (5.51)

In accordance with (5.50) the most general solution for ala(a) is

o'l,2(a) = sia m (a'_) (5.52)

where m is an integer. However, before proposing any form of al,2(a), we note certain

characteristics that must be satisfied as dictated by the physics of the problem. They

are:

(a) _r_.2(a) must have a first order pole singularity in the strip IRe(a)[ _< ¢ at

a = ¢' to allow recovery of the incident field

(b) S_,h(a) = O( constant ) for large IIm(a)l (since the fields at the edge take

a constant nonzero value)

(c) _rl.2(a) should contain the pole singularities associated with the term

1/cos(a - _) which lie in the strip IRe(a)[ < r. This is a consequence of

the solution procedure.

In view of these requirements, al,2(a) should be of the form

_cos *' C,,h D,,h
cr, a(a) = A,,2 . " " + + (5.53)

sin _,, --sin _, (sin _-,_-sin _-) (sin _-,_-sin __z)

The coefficients A1,2, Ce,A and D,,h are constants to be determined and al = 6p - 9,

o_2 = (I) - -_ represent the zeros of cos(a - +) in the strip IRe(a)l < _.
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The constants A1,2 are obtained by requiring that the final solution recovers the

incident field. For this, it is necessary that

cos(¢' - ¢) {cos(¢' - _)A1 + cos 13osin(¢' - _)A2} (5.54)
ez = 1 - sin 2/30sin2(¢ ' - _)

hz

giving

cos(¢' - ¢ )
1 - sin 2/30 sin2(¢ ' - ¢)

{cos/3o sin(¢' - _)A, - cos(¢' - _)A_} (5.55)

A1 = cos/3o tan(¢' - _)h, + ez (5.56)

A_ = cos [3otan(¢' - ¢)e, - h_ (5.57)

To determine the constants C_,h and D_,h, we note that the expressions for S,,h

given in (5.45) and (5.46) have four undesirable poles, all in the strip IRe(a)[ < r.

These are associated with the multiplying factor {1 - sin 2/3° sin2(a - _)}-' and are

given by

with

oo----jln /559/
so that cos ao = csc/3° and sin So = -j cot/30. Each one of these poles corresponds

to an inhomogeneous plane wave which grows exponentially with increasing kp in

some region of space and it is thus necessary to remove these poles by choosing the

constants C_.h and D_,h such that the numerator of S_,h goes to zero at these poles.

From (5.45), the conditions, which must be satisfied to eliminate these undesired

poles are

( ) ( ):l:j t , O - -_ :l: a o + t 2 0 - -_ :l: oto =0 (5.60)
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5:jtl (_ _ 3rr (_ _ 3rr--_4-C_o)+t2 _ +no) =0 (5.61)

which are four equations sufficient for determining the constants C,.h and De,h. A set

of conditions, identical to (5.60)-(5.61), can also be obtained by similar arguments

imposed on (5.46). Thus cancellation of the undesired poles for S_(a) is carried over

to Sh(a).

To obtain the z components of the far zone diffracted field, we first deform the

Sommerfeld contour shown in figure 5.2 into a steepest descent path. A non-uniform

evaluation of the integrals via the steepest descent method then yields

e-ikp.inflo e-i
E_ _ {S,(¢ - _r) - S_(¢ + r)} (5.62)

x/2r kp sin/3o

e-JkP sin Bo e -j

ZH_ _ {Sh(¢ - r) - Sh(¢ + r)} (5.63)
VI27r k p sin/3o

We note that in the far zone, the above z components of the diffracted field are

proportional to the corresponding 13o and ¢ components via the relations

E_ = - sin 13oE_o ZH i = - sin 3oE_

Similarly, for the incident fields

E_ = sin /_oE_o Z H_ -----sin/3oE_

(5.64)

(5.65)

The solution of the difference equations (5.28) and (5.29) as presented above re-

covers the exact solutions for the three special cases, namely those corresponding

to, normal incidence (/3o = rr/2) with arbitrary wedge angle, a half plane (arbitrary

30, _ = _') and a two part plane (arbitrary/30, 4> = r/2). An important feature

of this solution, lacked by other available solutions [13,14,15,19], is that a single

computer code can be employed to compute the scattered field for all three special
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casesmentioned above. However,our primary interest is to examine the accuracy

of the solution for other wedge angles. We expect, of course, the solution to deteri-

orate as the wedge angle and/or the skewness angle/30 move away from the values

corresponding to the special cases. This is illustrated in figures 5.3-5.6 where far

zone backscatter (_b = _b') patterns are given as a function of the observation angle

q_ and for different wedge angles. Figures 5.3 and 5.4 show the patterns for internal

wedge angles of 0 °, 10 °, 20 ° and 30 ° with/3o kept at 30 °. In figures 5.5 and 5.6/30 is

varied from 90 ° to 40 ° while the internal wedge angle is kept constant at 30 ° . From

the plots in figures 5.4(b) and 5.6(b) we observe that the pattern deteriorates in the

region beyond the reflection boundary of the upper face or in other words when the

lower face becomes visible. This is concluded from the appearance of a false pole

and a false null in the pattern not corresponding to any physical characteristic. Such

a behavior is not unexpected because as noted earlier our solution emphasized the

upper face boundary condition whereas the boundary condition for the lower face

was only approximately satisfied since we arbitrarily had set fl,2(a) = 0. Next we

introduce new linear combinations tl and t_. to separate the difference equations so

that the lower face boundary conditions are satisfied exactly whereas the upper face

boundary conditions are only approximately satisfied. The derived solution should

be more accurate for observations near the lower face of the wedge.

5.3.2 Separation Method II

To separate the equations for the lower face (_b = -_) of the impedance wedge

we introduce the linear combinations

t,(a- _) = cos/3otanaSh(a - _) + S.(a - _) (5.66)
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internal wedge angle = 10°.



77

(a)

_9
,,,,_

20.0

I0.0

0.0

-I0.0

-20.0

-30.0

-40.0

-50.0

-60.0

-70.0
-180.0

20.0

........ [ ........ [ ........ [ ........

m

I "

-90.0 0.0 90.0 180.0

10.0

0.0

-I0.0

= -20.0

(b) _ -30.0

._ -40.0

-50.0

-60.0

-70.O
-180.0

¢ (deg)

........ _ ........ | ........ | ........

,.
-90.0 0.0 90.0 180.0

¢ (deg)

Figure 5.4: Far zone backscatter pattern for an impedance wedge having 7]+ = 1.0 -

jl.0, 77_ = 0.5- jO.1, /3o = 30 °, E_o_'o, (a) internal wedge angle = 20 °,

(b) internal wedge angle = 30 °.



78

(a/

2

(b) _

L_

20"0I ........ i........ i ........ i ........10.0

0.0 I-I0.0

._ -20.0[-

• -40.0 V

-50.0

-60.0
-70.0 ' " " ' ..................

-180.0 -90.0 0.0 90.0 180.0

¢ (deg)

-90.0 0.0 90.0 180.0

¢ (deg)

Figure 5.5: Far zone backscatter pattern for an impedance wedge having r/+ = 1.0 -

jl.0, q_ = 0.5 -j0.1, internal wedge angle = 30 °, E_oZ,, (a) flo = 90 °,
(b)/L = 70°.



T9

(a)

(b)

o

m

o

o

2

o_

20.0

10.0

0.0

-10.0

-20.0

-30.0

-40.0

-50.0

-60.0

-70.0
-180.0

20.0

10.0

0.0

-I0.0

-20.0

-30.0

-40.0

-50.0

-60.0

-70.0
-180.0

........ I ........ I ........ I .......

-90.0 0.0 90.0

¢ (deg)

180.0

-90.0 0.0 90.0 180.0

, (,leg)

/

Figure 5.6: Far zone backscatter pattern for an impedance wedge having 7/+ = 1.0 -

jl.O, r1_ = 0.5 -jO.1, internal wedge angle = 30 °, EOo_,, (a) 30 = 50°,

(b) 3o = 40 °.
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t_(,_ - ¢) = cos/3otan,_S_(_ - 0) - Sh(,_ -- 0)

This implies that

tl(_ + o) = cosZotan(,_ + 20)Sh(_ + 0) + S,(o + 0)

(5.67)

(,5.68)

t2(a + 0) = cos/3o tan(a + 20)S_(a + 0) - Sh(a + 0) (5.69)

and on following the procedure outlined in the previous section we get the difference

equations

A_h(O_ "F O)tl,2(_ + 20) -- A_h(a -- O)q,2(a -- 20) = fla(a)

where fla(a) is now given by

f,,_(o) = p,,2(o + 0) =

(5.70)

2 cos/3o sin 20 A+h(a + 0)
cos 20 + cos 40 cos 2a + sin 4(I) sin 2a

2 cos/3o sin 20

•Sh,.(a+20)- co520 +cos2a Sh'`(-a) (5.71)

Again we note that fl,2(a) is identically zero when cos/3o sin 20 = 0. This implies

that on setting ft,2(a) = 0 the resulting solution for tx,2(a) is the exact one for the

cases where

(a) 3o = r/2 (Normal incidence with arbitrary wedge angle)

S,(_)=

(b) • : _ (Half plane with arbitrary/3°)

(c) • = _'/2 (two part plane with arbitrary _o).

The new expressions for &(a) and Sh(a) are

cos(c_+ 0)
1 - sin 2 _o sin2(a + 0)

cos(o_+ 0)

1 - sin 2/3o sin2(a + 0)

{cos(a + O)t,(a) + cOS3osin(a + O)t2(a)} (5.72)

Sh(_) = {COSaosin(. + 0)t1(-)- cos(_ + O)t:(.)} (5.Z3)
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and the solutions for tl,_(a) are again of the same form as in (5.49). The expressions

for al,2(c_) will also be the same as given in (5.53) except for the replacements al

-_1 and c_2 _ -as. On imposing the requirement for the incident field we get

A1 = cos 30 tan(¢' + ¢)h, + ez (5.74)

A2 = cos/3o tan(¢' + ¢)ez - hz (5.75)

and the constants C_,h and De,h can be found by cancelling the undesired poles of

S,,h. These are now associated with the term {1 - sin 2/30 sin_(c_ + _)}-1 and for

where ao is the same as before. From (5.72), the conditions which must be satisfied

to eliminate the undesired poles are

+jtl(2-_:kao)+t2(2-_-i-ao) =0 (5.77)

(?
leading to a 4 x 4 matrix for the solution of the constants C,,h and D_,h. A non-

uniform steepest descent path evaluation of (5.18) and (5.19) will, then, yield the

far zone diffracted field as given in (5.62)-(5.63) with the new expressions for S,,h as

given in (5.72)- (5.73).

Figures 5.7 and 5.8 show the far zone backscatter (¢ = ¢') patterns of an

impedance wedge for internal wedge angles of 0 °, 10 °, 20 ° and 30 ° with /3o kept

at 30 ° . In figures 5.9 and 5.10,/30 is varied from 90 ° to 40 ° while the internal wedge

angle is kept constant at 30 ° . Again, we note that the accuracy of the patterns
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worsens as we move away from the special cases of a half plane (internal wedge

angle=0 °) or away from normal incidence wedge (8° = _'/2). When the internal

wedge angle is not zero, close inspection of figures 5.8(b) and 5.10(b) reveals that

the pattern deteriorates in the region beyond the reflection boundary of the lower

face or in other words when the upper face becomes visible. This is concluded from

the appearance of a false pole and a false null in the pattern not corresponding to

any physical characteristics. Such behavior is not unexpected because our solution

emphasized the lower face boundary condition whereas the boundary condition for

the upper face was only approximately satisfied. The pattern is reasonable as long

as the observation point remains near the lower face.

5.3.3 Separation Method III

We next turn our attention to the case when both faces of the wedge are visible.

In order to obtain a solution of acceptable accuracy in this region, the difference

equations associated with the upper and lower faces of the wedge have to be decoupled

without introducing approximations to the implied boundary conditions. This can

only be done if all trignometric terms in S,,h(a) have a period of 2¢. However,

because of the presence of sin a and cos a this is not possible unless they are replaced

by an expansion having that property.

expansion are

Suitable candidates for functions of this

rmr a tara _rol :r a (5.79)sin --_, cos --_, sin m --_-, cos "_

where rn is an integer. From equations (5.62) and (5.63), we observe that in the final

evaluation of the far zone diffracted field, a eventually takes on the real values of

d) :t: rr. Also, to determine the constants AI,_ we substitute ¢_ (a real valued variable)

in place of a. This suggests that we may treat a as a real variable and represent
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Figure 5.7: Far zone backscatter pattern for an impedance wedge having 77+ = 1.0 -

jl.0, r/_ = 0.5 -j0.1,/3o = 30 °, E_o;_,o, (a) internal wedge angle = 0 °, (b)
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sin a and cos o_ in terms of a Fourier series given by

rn 7r o_

coso _ a o + Z am cOs -
m=l 111

(5.80)

where

and

sin a = _ b._ sin mrr_____
m----1 (I)

(5.Sl)

• •

1/ 1/ao = 2--_ cos otd_, am = $
-0 -0

m 71"o_ _
cos _ cos _-_-dot (5.s2)

0
1 rn_ra .

b,,, = _ / sinasin Tdc_ (5.83)
-0

The above series representations will approach sin a and cos a, inside the real interval

[-q_, _], depending on how many terms in the series are used for the approximation.

Obviously, the expansion will deviate substantially from the actual values of sin c_

and cos c_ outside this interval. Since ¢ 4-rr (with -¢ < ¢ < _) replaces a in the

evaluation of the far zone field, we would like the expansions (5.80)-(5.81) to remain

accurate inside the intervals [-_ - rr, _ - r] and [-q_ + r, • + r]. From the above

we conclude that this is not the case, and consequently the Fourier series expansion

is not a suitable choice.

Another possibility for representing sin a and cos a by a function of period 2¢ is

to use a few terms of the expansion with am, b,,, other than those given by (5.82)

and (5.83). In particular, we may choose the beginning terms of the series, namely

sin __e and cos _ (where we have chosen bl = 1,ao = 0 and al = 1 for the time

being), to approximate sin a and cos a, respectively. To establish a measure of this

approximation in representing sin a and cosa for other _, we refer to the plots of

sin _.e and cos _ in figure 5.11. Clearly, for _ = r these approximations precisely
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A_,h(a)tz,2(a -- ¢) = tz,_(-a -- ¢) (5.91)

which can be readily decoupled for a solution of tx,2(a). In particular, on replacing

a with a + ¢ in (5.90) and with a - _ in (5.91) and then subtracting (5.91) from

(5.90) we get

A+h(a + ¢b)t,,2(a + 2¢) - A_,a(a - ¢)tl,2(a - 2¢) = 0 (5.92)

recover sin a and cos oL. Introducing this approximation to replace sin a and cos

where they appear in S,,h(a) and in equations (5.22) and (5.23), we obtain

A_(_) cosT&(_±¢)+cosZosinTSh(_±¢ ) =

cos--_-S_(-c_±_)-cosl3osin---_Sh(-a±¢) (5.84)

a_(a) cOSZosin_&(_±¢)-cosTSh(_±¢) =

7t'_ S ._&(-_ ± ¢) - cos-_- h(-_ + ¢) (5.85)- cos _3osin -_-

where A,,h(a) is the same as defined in (5.24). To separate the above equations, we

introduce the linear combinations

7I"(3t 7rO_

t,(o,+ +) = cosSosin -4-s,,(_ + _) + cos--4-so(o,+ ¢) (5.86)

t2(a + ¢) = cos/3o sin -_-S,(a + ¢) - cos -._--Sh(a + ¢) (5.87)

which also imply that

_'O_ 7FO_

t,(_ - ¢) = cos_osin -_--&(_ - ¢) + cos -_--&(_ - ¢) (5.88)

7t'Et _t]t

t_(a - _) = cos 13osin -_-S_(a - ¢) - cos ---_-Sh(a - ¢) (5.89)

Introducing these expressions in (5.84)-(5.85), we obtain

A+h(a)ta,2(a + ¢) = t,,2(--a + ¢) (5.90)
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This is a difference equation identical to (5.41) with fl,2(a) = 0 and can be solved via

Maliuzhinets' method for all wedge angles. We observe from (5.84) and (5.85) that

the solution of (5.92) for an arbitrary wedge angle will recover the exact solutions

for the cases when

(a) _o = r/2 (Normal incidence with arbitrary wedge angle)

and

(b) • = rr (Half plane with arbitrary 8°).

Once ta,2(ot) are determined, the spectra Se,h(a) are found from the relations

--1 { 7ro_ 7r_t }= ,_ cos --_--t,(ct) + cos Bosin-_-t_(a) (5.93)Se(a) 1 - sin2"_: sin 2 T

-1 { _rat ... _o, }
Sh(a)= l_sin2_osinZ._ cOS_osin--_-- a(, )--COSTt2(OL) (5.94)

and these were derived by using the expressions

tl(a) =-cos_osin Sh(a)-cos-_--So(cO (5.95)

_'a __t2(c,) = - cos _o sin-_-&(cO + cos Sh(,_) (5.96)

which follow from (5.86)-(5.89).

Let us now solve (5.92) for tl,2(a).

t_,2(a) can be written as in (5.49) with a_,2(a) changed to

1-cos ¢' a
= a __ + Ce,h + De,h sin -- (5.97)

ala(a) Al'_sin _ - sin _'' n
rl n

The above expression for ch,2(a) is chosen to satisfy the conditions

(a) aa,2(a) must have a first order pole singularity in the strip IRe(a)l < ep at

a = ¢' to allow recovery of the incident field

(b) S,,h(a) = O(constant) for large [Im(a)l (since the fields at the edge take

Following the procedure outlined before,
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a constant nonzerovalue).

The constants A1,2 are again computed so that the residue of the pole at a = ¢'

yields the incident field. We have

Al = - cos_3o sin r¢'h 7r¢' (5.98)
¢ z - cos -_-ez

1r¢' _'¢'h (5.99)
A2 = - cos 8o sin --_-e_ + cos _

From (5.93) and (5.94), the undesired poles of S_,h in the strip IRe(a)[ < rr are given

by

_1,2 = a,. 4- ja_, _3,4 = -a,. + ja_ (5.100)

where

c_, =- a_= In tan (5.101)
2'

The constants C_,h and D_,h are determined in a similar manner as described earlier

to cancel these poles.

The specification of t_,2(a) and Se,h(a) is now complete, and the far zone diffracted

field can be calculated from the non-uniform steepest descent path evaluation of

(5.18) and (5.19). This far zone diffracted field, with ¢ = ¢', is plotted in figures

(5.12) and (5.13) for a half plane (internal wedge angle=0 °) and for a wedge (inter-

nal wedge angle=30°). From figure (5.12), it is interesting to see that there is no

deterioration (i.e. no false peaks or nulls) in the pattern for the region between the

two reflection shadow boundaries. However, in figure (5.13), the comparison of the

cross-polarization patterns of the wedge with that of the half plane reveals that in

the case of the wedge there are two false poles appearing at ¢ = =k_ =1=• (reflection

shadow boundaries). To resolve this problem, we note that for a half plane (¢ = zr)
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sin -_- = O, at a = -ep, O, • (5.102)

and

ra _r _r _ ¢ (5.103)cos -_- = 0, at _ = -_ + ,t,, -_

which ensures that the poles in question do cancel out. However, for an arbitrary

wedge angle ¢ -# _', (5.103) is no longer true. This suggests that we should replace

'_ _- _" " - _ cancellingcos -_ with cos T + cos ,_ which goes to zero at a = -5 + _, 5

the undesired poles just as it was done in the case of a half plane. We note that

this modification still permits our solution to reduce to the exact ones as discussed

above. In addition to this, the inspection of (5.84) and (8.88), yields that the normal

incidence (30 = _) wedge solution can still be recovered.

"" by cos '_" _-Replacing cos -_- T + cos ,, in (5.93)-(5.96), we obtain that

-1
s(_) ~

cos2 #o sin2 ,_,, ( .,, _)aT + cos T + cos

7ro¢ 71"O:{(co v + }
-1

co_ZoS_.__ + (¢o__ +¢o__)_
7r_ 71"O:

• {cos t3o sin -_-tl (a) -- (cos -_-" +

These expressions imply that

A1 = - cos/30 sin Th,-Tr¢' (cos 7r$',a ez (5.106)

--6-ez + cos T + cos h z

and we observe that the incident field is recovered as required.

(5.107)
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The poles of S_,h to be cancelled are now associated with the multiplying factor

{cos2 3o sin2 W + (cos _ + cos _)_} -a"_ and for IRe(a)] < _', these are

_1,2 = aT + jai, _3,4 = -aT + jai (5.108)

where

sin _3oprovided

a,= :cos-' _ , ai= :ln tan

_< 1. When ],i._o[ > 1, the poles are given by

_1,2 = +jai,, _,4 = +jai2

(5.109)

(5.110)

with

where

n( )1aq,, = :In x,,2+¢x122 -I (5.111)

cos cos I
xl,2 - sin 2/30 4- sin---:_-2--'/3ov/C°S2 -n - sin2/3o (5.112)

The constants C_,h and D.,h can now be determined in a similar fashion as described

earlier to cancel these poles. Figure 5.14 shows the far zone backscatter (¢ = ¢')

patterns of an impedance wedge having an included angle of 30 ° . It is clear from

figure 5.14 (b) that the replacement of cos _ by cos _ + cos _ takes care of the false

poles.

So far, we have developed three different solutions of the difference equations

represented by (5.22) and (5.23). The first and the second solutions were obtained

by separating the difference equations associated with the upper (¢ = +(I)) and the

lower (¢ = -(I)) faces of the impedance wedge, respectively. The third solution was

constructed by approximating the trignometric functions sin a and cos a terms with
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functions which were periodic in 2_. This led to the separation of the difference

equations associated with both faces of the impedance wedge. We note that all three

solutions recover the half plane (q_ = r, with arbitrary flo) and the normal incidence

(.30 = rr/2, with arbitrary wedge angle) cases exactly. These three solutions can now

be employed to compute the far zone diffracted field with each solution to be used in

the angular region where it is expected to do better than the others. In particular,

the first solution should be employed when the observation angle ¢ is in the region

starting from the upper face ¢ = +¢ and ending at the shadow boundary (incident or

reflection) reached first from the upper face. The second solution should be employed

when the observation angle ¢ is in the region starting from the lower face ¢ = -_

and ending at the shadow boundary (incident or reflection) reached first from the

lower face. The third solution should be used in the region where the observation

angle ¢ is between the two shadow boundaries (both reflection shadow boundaries or

one incident and one reflection shadow boundary) of the wedge. Figure 5.15 shows

the regions where the three solutions should be applied. Using this criterion, the far

zone backscatter (¢ = ¢_) patterns of an impedance wedge are plotted in figure 5.16

for internal wedge angles of 20 ° and 30 ° while 8o is kept constant at 30 °. Figure 5.17

shows similar plots for two other values of flo (namely 50 ° and 40 ° ) with the internal

wedge angle kept at 30 ° .

5.3.4 Test Results

The presented approximate solutions for an impedance wedge are expected to be

accurate when the internal wedge angle of the wedge is close to zero (a half plane)

and/or when the skewness angle _o is near 90 ° (normal incidence), ttowever, it is

interesting to compare the results obtained on the basis of these approximate wedge
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solutions with the known exact solution for a right-angled wedge (internal wedge

angle = 90 °) having one face perfectly conducting. This is the only known solution

not recovered by the given approximate ones. The accuracy of the approximate

solutions is obviously expected to be low in this case because the internal wedge

angle of 90 ° is quite far from the special cases recovered by the approximate solutions.

Figures 5.18-5.21 show backscatter patterns for both like- and cross- polarizations

with /30 having values of 60 ° and 30 ° . We observe that the approximate solution

is more accurate for /3° = 60 ° than it is for flo = 30 °. This is understandable

because /30 = 60 ° is closer to /30 = 90 °, in which case the approximate solution

recovers the exact one. We remark that the presented cross-polarization plots were

computed everywhere by the approximate solution of method III since the other two

approximate solutions become highly inaccurate for this wedge angle.

5.3.5 Summary

In this chapter, we considered the skew incidence scattering from an impedance

wedge having arbitrary included angle. Application of the boundary conditions

(SIBCs) on the wedge faces resulted in a set of four coupled functional difference

equations. Three different approximate solutions were presented to solve these dif-

ference equations. The first and the second solutions were obtained by separating

the difference equations associated with the upper (¢ = +qb) and the lower (¢ = -_b)

faces of the impedance wedge, respectively. These solutions were found to recover

the exact ones for the three special cases, namely those corresponding to, normal

incidence (/7o = 90 °) with arbitrary wedge angle, a half plane (arbitrary/30, internal

wedge angle = 0°) and a two part plane (arbitrary #o, internal wedge angle = 180°).

An important feature of these two solutions, lacked by others [13,14,15,19], is that
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a singlecomputer code canbe employedto compute the scattered field for all three

special casesmentioned above. The third solution wasconstructed by approximat-

ing sinc_and cosc_,appearing in the differenceequations, with functions having a

period of 2¢b.This solution reducesto the exact half plane (arbitrary/3°, internal

wedgeangle = 0 °) solution and the one for normal incidence (/3o = 90°). A scheme

was suggested to use all three approximate solutions in their respective regions of

accuracy. Finally, the results from the approximate solutions were compared with

those obtained from the exact solution of a right-angled wedge.
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CHAPTER VI

SKEW INCIDENCE SCATTERING FROM A

COATED CYLINDER SIMULATED BY SIBC

The skew incidence dyadic diffraction coefficient developed in the previous chap-

ter is an approximate one and it is necessary to establish the extent of its accuracy.

This is achieved in this chapter by comparison with numerical data. These are ob-

tained from a moment method solution of a coupled set of integral equations for

skew incidence on an impedance cylinder of arbitrary shape. The surface currents

obtained from the solution of the coupled integral equations are subsequently inte-

grated to yield the scattered field on the diffraction cone. A corresponding first order

high frequency solution for the far zone scattered field is then generated using the

approximate diffraction coefficient and compared with the moment method data.

6.1 Integral Equation Formulation

Consider a closed cylindrical surface of infinite extent along the z-axis and having

a constant cross section in the xy plane. Let C denote the contour enclosing the

cylinder's cross section in the xy plane and fi to be the outward normal to C. Also,

we define t = :_ x fi, so that ([, fi, ,_) form a right handed rectilinear system at each

contour location as shown in figure 6.1.
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A

Y

V

C

Figure 6.1: Geometry of a cylinder of arbitrary cross section.

Since the impedance cylinder is infinite along the z-direction, the scattered field

will have the same z-dependence as the incident field. We assume the incident field

to be the plane wave

-_ --" "_o e'Tk (x cos ¢' sin 3'o+U sin ¢' ,in _3_-z co, B'o)

_-i = Z_ i x _-i

(6.1a)

6.1b)

where _' denotes the unit vector along the direction of incidence. By invoking the

equivalence principle, the scattered field from the impedance cylinder can then be

given as the radiation of the surface electric (J) and magnetic (M) currents

J(t) = h × H = t Jr(t) + kS,(t) (6.2)
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_(t) = _ × ,_= i'Yi,(t) + _,(t) (6.3)

in which (E, H) denote the total electric and magnetic fields in C and t is a measure

of the arc length along C. From (6.2) and (6.3), it follows that

Jt = Hz, Jz =-Hi (6.4)

Mr= -E,, M_=Et (6.5)

and when (6.4) and (6.5) are coupled with the SIBCs (see (2.1)-(2.3))

Et = rlZHz, E, = -rlZHt (6.6)

to be enforced on C, they yield

:,It = -riZJ_, 3,1_ = _ZJt (6.7)

The scattered fields can in general be written in terms of the vector potentials as

-- 1
-E" = -V × F - jkZ_ + .-;--_,,VE r. A (6.8)

3xr

-if" = _7 × -A - j k Y T + j-_ V V . -F

By using (6.7), we have

= -_ / {_J,(t')+sJz(t')}Ho(_)(k,.s_n:_o)_-J'_'c°'_'°,_t'4
C

(6.9)

(6.10)

-:= JZ f {ig_(t')- _g'(t')} '7(t')H(°_,(k'sin/_°)_-jk'c°'_°dt'4 (6.11)
C

in which [' denotes the unit tangent to C at the integration point, H(2)(.) is the

zeroth order Hankel function of the second kind and

r = IP- ffl (6.12)
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where ff and _' denote the projection of the observation and integration points in

the xy plane, respectively. Expanding (6.8) we find that the z-component of the

scattered electric field is given by

YE_ ksin _ i3o f jz(t,)H!2)(krsin13o)d t,4
C

j k sin /3o f rl( t,)J,( t,)( h, " ÷ )H_)( kr sin _3o)dt,4
C

_jk sin/3o cos/30 f Jv(t'){(i. i')(t. ÷14
C

+(h. t')(h" _)} H(2}(krsin/3o)dt ' (6.13)

where H_2)(.) denotes the first order Hankel function of the second kind,

÷ _ (P- V) (6.14)
31

and the factor containing the z-dependence has been suppressed. A similar expression

for the scattered magnetic field is

z/: ksin 2/30 f rl(t,)Je(t,)H_)(krsin /3o)dt'4
C

j k sin /3o
4 f Je(t')(h'. ÷)H(o2)(krsin_o)dt '

C

jk sin/30 cos/3o
4 f rl(t')J'(t') {([" i')(t. ?)

C

+(h. i')(h. ÷)} H(o_)(krsin_o)dt ' (6.15)

where h' = [' x _. and we have again suppressed the e -jkz¢°'B° factor.

A solution for J[ and J_ can now be obtained by constructing a set of coupled

integral equations to be solved numerically. A usual procedure in obtaining such a

set is to enforce the boundary conditions (6.6) on C. Expressing the total field as a

sum of the incident and scattered fields, in view of (6.4), (6.5) and (6.7) we have

E_ + E: = riZJ, (6.16)
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and

H_ + H," = Jt (6.17)

Substitution of (6.1)(without the z dependence),(6.13) and (6.15) into (6.16)--(6.17)

now yields a suitable set of integral equations, for the solution of Jz and Jt on C, as

YE_
k sin 2 flo

rl(t)Jz(t) + 4 f Jz(t')H(°2)(krsinS°)dt'
C

• sin 8o
+3k 4 f

C

+jksinSoCOSSo f Jt,(t'){({. [')([. ÷)4
C

+(,_. {')(,_. ÷)} H!2)(krsinSo)dt ' (6.18)

H: ksin 2 8o f rl( t,)je( t,)H(o2}( kr sin So)dt,Jr(t)+ 4
C

jksinSo f J,,(t')(h'. ÷)H(o2)(krsinSo)dt 'Jr 4
C

_jksinSocOSSo f q(t')J,(t'){({, i')(i. ÷)4
C

+(h. i')(h. ÷)} H(o2)(krsinflo)dt ' (6.19)

To discretize the integral equations (6.18) and (6.19) it is, of course, necessary

to discretize and evaluate the line integrals appearing in them. By employing a

pulse basis expansion for Jz and Jr, a matrix system is generated whose impedance

matrix elements can be evaluated numerically or analytically in terms of the functions

defined in [a21.Upon evaluation of the surface currents J_(t) and Jr(t), the far zone

(p ---, ec) fields at (p, ¢) can be obtained from (6.13) and (6.15) by letting [ = -¢,

h _ /5, ÷ __ _, and making use of the large argument expansion for the Hankel

functions. It is also to be noted that in the far zone, the above z- components of the

scattered field are proportional to the corresponding flo and ¢ components via the
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E_' = sin ' '- _oE3o ,
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ZH_ = - sinl3oE_ (6.20)

6.2

=sm _3oE_,, Z H_ = sin f3oE_,

First Order High-Frequency Far Zone Field

(6.21)

To validate the approximate skew incidence diffraction coefficient developed in

chapter five, we need to compute a first order high-frequency (GTD) far zone scat-

tered field from a triangular impedance cylinder shown in figure 6.2. For this geom-

etry, the first order high-frequency far zone field is represented by

Figure 6.2: Geometry of a triangular impedance cylinder.
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where

3
e-3ksp

p=l

(6.22)

= .., . A, ""D = do/3oD_o _, +/3o¢ D_oO, + ¢/3oD_,o + (6.23)

is the skew incidence dyadic diffraction coefficient for an impedance wedge, s is the

distance between the diffraction and observation points and the subscript p sim-

ply denotes that the parameters are measured with respect to the pth edge of the

triangular cylinder.

6.3 Test Results

To demonstrate the validity of the diffraction coefficient, we refer to figures 6.3-

6.13 where the echowidth

o-= lim 2rrs- [_'12 (6.24)
I 12

is plotted as a function of scattering angle. In figures 6.3-6.7, bistatic scattering

patterns are plotted for /30 = 90 °, 60 ° and 30 ° while the internal wedge angle a is

kept constant at 30 °. Clearly, the agreement between the first order GTD solution

and the moment method is quite good. The small disagreement observed at around

0 °, 1S0 ° and 360 ° is due to the absence of multiply diffracted fields as confirmed

by the results for the normal incidence case (which is exact) shown in figure 6.3.

Figures 6.8-6.13 show bistatic patterns for the triangular cylinder with the wedge

angle a = 40 ° and 50 °. Again, the approximate GTD solution is found to be accurate

even for /3o down to 30 °. The normal incidence (/30 = 90 °) patterns 6.8 and 6.11

are given as a reference to show the regions of disagreement due to the absence of

multiply diffracted field. The above test cases are only a sample from a rather large
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set of validation data. In all cases, we found a remarkable agreement between the

first-order GTD solution and the corresponding moment method data for internal

wedge angles up to 50 ° .

6.4 Summary

To validate the approximate solution for an impedance wedge, a coupled set of

integral equations for skew incidence on an impedance cylinder of arbitrary shape

were derived and solved via moment method. The surface currents obtained from the

solution of the coupled integral equations were subsequently integrated to yield the

scattered field on the diffraction cone. A corresponding first order high frequency

(GTD) solution for the far zone scattered field was then generated using the ap-

proximate diffraction coefficient and compared with the moment method data for a

variety of different wedge angles. A remarkable agreement was found between the

first order GTD solution and the corresponding moment method data for internal

wedge angles upto 50 °.
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Figure 6.3: Far zone bistatic scattering pattern for a triangular cylinder with top

side width w = 4A, a = 30 °,/3° = 90 °, ¢' = 70 °, and its top face having

rI = 0.25, and the other having 7/= 0.75 + j0.75, (a) EOoZ;, (b) Eo_,.
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CHAPTER. VII

PTD FORMULATION FOR SCATTERING BY

IMPEDANCE STRUCTURES

The approximate solution developed in chapter five for an impedance wedge is

essential for studying the scattering from practical three dimensional structures.

In this chapter, equivalent currents are derived, based on the approximate dyadic

diffraction coefficient, for computing the scattering by a finite length impedance

wedge of arbitrary angle. The derived equivalent currents have been implemented in

a standard general purpose PTD code [21] and results are presented demonstrating

the accuracy of the formulation for a number of impedance and (dielectrically) coated

structures. These include typical shapes such as plates, finite length cones and

cylinders which have been partially or fully coated. The PTD type of implementation

requires a dyadic physical optics diffraction coefficient which has been derived in

appendix A.

7.1 Derivation of Equivalent Currents

Consider an impedance wedge of infinite length oriented along the z-axis of a

spherical coordinate system as shown in figure 7.1. The normalized face impedances

on the upper and the lower faces of the wedge are rl+ = Z+/Z and 77_ = Z_/Z,

respectively, with Z being the free space intrinsic impedance. The incident electric
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field on the wedge geometry is assumed to be a plane wave described by

= Eie_jk ,.  i (7.:)

where E i is the constant complex amplitude of the incident field at the origin, ._' is

the unit vector in the direction of propagation, _- is the position vector of a point in

space and ii is a unit vector indicating the polarization of the incident electric field.

The incident field at a point z = z' on the edge can, therefore be expressed as

E"(z') = Eie -J_*' ¢°'z_'a; (7.2)

and to simulate the source of the field diffracted by the edge, we place a fictitious

electric line current

-r(z,) = I'(z')e -jkz'¢°'_'{ (7.3)

at the edge of the wedge, in which t denotes the unit vector tangent to the edge.

The magnetic vector potential at the field point due to this current is given by

oo e-Jk#a /

A(:) =/_ooT(z')_dz (7.4)

where s d is the distance from a current element of incremental length dz' at z -- z'

to the field point. Assuming that _(z') is slowly varying and k is large, (7.4) can be

evaluated by the method of stationary phase to give

e , -j"I (z,)e , , e -jk'_
e-jk,, cO, o (7.5)

A_(_) _ 2x/'_'ksin_o x/_

where ,,-' is the stationary point corresponding to the case when t3o' = 3o" Using

this result the/)o-polarized component of the far-zone radiated field due to the line

current I _, where/)o = _d X q_, is then found from

E_o = jkZ sin /3oA, (7.6)
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Figure 7.i: Edge-fixed coordinate system.
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This must be equal to the known diffracted field from the wedgegiven by

• -- i -- (7.7)E_o = - (E'_,D_o_, + E¢,D_o_,) e -_k_'_°'_°e-jk'd e-J_"

where D"-_oz, and D_-_o_,are the diffraction coefficients of the wedge and will be defined

later, E_$ and Z_, are the complex amplitudes of the _'o- and ¢'-polarized components

of the incident field at the phase origin with _' = _ x ¢'. Comparing (7.6) and (7.7),

the electric line current I _ is readily identified to be

j2 _ ,-- , _ ,-- ,
U(z') = _z [E,,(z )OZo,,(z ) + E_,,(z )DOo,_,(z )] (7.8)

Following a similar procedure one can obtain the expression for the magnetic line

current I" to be

-j2 -- E$,(z')-Dt_,(z')] (7.9)I'(z') = --if- [E_,(z')D¢_,(z') +

7.2 Radiation from Equivalent Currents on a Finite Wedge

7.2.1 Straight Wedge

Consider a straight wedge of finite length g oriented in the direction t as shown

in figure 7.2. For this case, it is convenient to assume a local coordinate system

(x', y', z') for the wedge so that i coincides with the z'-axis. The origin of this local

system is chosen to be at the center of the wedge and is defined by the global position

vector Y_o.

We again postulate the existence of filamentary electric and magnetic currents I _

and I m on the finite edge. The amplitudes of these equivalent currents are assumed

to be the same as those found for the infinite wedge. The field diffracted by the finite

wedge can then be computed by integrating these currents over the finite length of
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the wedge. In the far zone, we obtain the diffracted field

e-Jk(r-i.F')

"-_ _ jk ej_t/2/el2[ZI'(_).i x (_ × t) + I'(_)(.i × t)] 4_rr dz' (7.10)

where V is the position vector of a current filament on the wedge and the propagation

direction of the radiated field is defined by the unit vector

,_ = ksinOcos¢+ _sinOsin¢ + kcosO

Substituting the expression for H(_) and Im(F ') in (7.10) and noting that

and

E_,(_') i. _' E' F'

-(i x 2)--i
E_,(¢) = si_o e Ei(_')

the far-zone radiated field is more explicitly given by

- 2_o-e-_*"_-,/_f'/_[, ×l*×i){(i•e")D_._--- /i ×b •_"--D_o,,}

(7.11)

(7.12)

(7.13)

where the incident field on the edge is assumed to be

(7.14)

_-_(_,) = Ei(#)_i = e-._Jd.v'_i (7.15)

and _ is the propagation direction of the incident field given by

= -i: sin 0 i cos ¢i _ _) sin 0 _ sin ¢i + _ cos 0 i (7.16)

If required, one can write the fi-polarized component of the above field as

fi . _-d _ e -jkr ejk(i-;)._" fi .... *i_e)Dzoz$ (ix _) e D_o_,}2_'r sin/3o [(_) { (i *i --

/el2 ejk.,O_i).idz,-_ (_x _){(_._,)_,_:-(i x b. _,z_**,}] .,-,/_ (7.17)
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where fi is a unit vector transverse to ._ (the unit vector in the direction of propaga-

tion). Also in the above we have used the fact that

= Vo -}-z'}' (7.18)

Performing the integration defined in (7.17) yields

e-Jkr

2_'r sin _o

In this the diffraction coefficients D can be chosen depending upon the type of high

frequency theory to be employed. In particular,

--- D GTD - D pO (Physical Theory of Diffraction or PTD) (7.20a)

= D P° (Physical Optics) (7.20b)

-D = D GTD (Geometrical Theory of Diffraction) (7.20c)

where D aTD is the approximate diffraction coefficient derived in chapter five and

D PO is the physical optics diffraction coefficient for an impedance wedge derived in

appendix A.

7.2.2 Curved Wedge

Consider now the curved impedance wedge shown in figure 7.3. The curve de-

scribing the edge is arbitrary and may vary continuously. If a plane wave is incident

on the edge, the total field diffracted from it can be calculated by first dividing the
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edge into small straight segments and then summing the individual contributions,

i,e,_

E'_ (total) = _--'_E_ (segment) (7.2A)

Suppose the excitation field at one of these small (incremental length) segments is

given by

(7.22)

and the far-zone field associated with the diffracted field from this differential length

along the edge may be written as

e-Jkr

-_ .._ _ (Obo + ¢b4,) (7.23)
r

the scattering amplitudes be and b_ of the diffracted field by eachFrom (7.19),

segment are then related to the incident field amplitudes through the matrix

where

bo fo0 i foe i ao,

b_ leo' f _' a¢,

Let --

e-Jkr

2rr sin/3o
. • ."--

(7.24)

-fi'(/x_){(/-_')D¢z, ([ _).gD_,¢,}]gsinc {kg(_-_)./}- x (7.25)

where ti stands for t} or q_ whereas _i represents Oi or ¢i, and since the discretization

segments are small we may set

sinc { kg(2_ - _) " [}2 ---,1 (7.26)
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Equations (7.21) in conjunction with (7.23)-(7.25) can be employed to calculate

the total diffracted field from an arbitrary curved edge. The RCS due to the edge

diffraction is then given by

cr_e = 4r If_,l 2 (7.27)

It should be noted that _ in (7.21) is only the partial field and, therefore, the RCS

in (7.27) is the partial RCS of the scatterer. To compute the total far-zone scattered

field we must add a complementary field to the diffracted field. Since in this work

we will pursue a PTD type of implementation, the complementary field will be a

Physical Optics (PO) field and the total field will be

Hence, for the total RCS, the physical optics field must be calculated separately and

then superimposed with the diffracted field to give

= f: ,t (7.29)

where

= f.e' + fue,? (7.30)

7.3 Test Results

The derived equivalent currents have been implemented in a standard general

purpose PTD code called McPTD [21] which employs only first order high-frequency

far zone fields. In particular, the codes McWedge (for a general curved PEC wedge

geometry), McLine (for long straight PEC wedges) and McRing (for a PEC wedge

forming a ring) have been modified for the case of an impedance wedge. To test the

accuracy of the equivalent current formulation, we refer to figures 7.4 - 7.8 where
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the RCS of a number of different structures is plotted as a function of incident angle

¢'. The results obtained from McPTD have been compared with the measured and

moment method data. The numerical data is obtained from a body of revolution

code which does not employ any approximate boundary conditions and is, therefore,

considered to be exact for coated structures. The RCS patterns given in figures 7.4

- 7.6 are for a flat base cone with half cone angle a --- 15 °. Figures 7.4(a) and 7.4(b)

display patterns due to incident E_, (HH) polarization for a perfectly conducting

and a coated cone, respectively, with base diameter of 2.0A. A decrease in RCS in

the case of the coated cone is observed because of the lossy coating. In figure 7.5,

patterns for a larger cone having base diameter of 3.0A have been presented. Figures

7.6(a) and 7.6(b) show RCS patterns of a partially coated cone, having a perfectly

conducting base, due to incident E_, (HH) and E_, (VV) polarization, respectively.

RCS patterns for a finite circular cylinder are displayed in figure 7.7 whereas figure

7.8 shows RCS patterns for a plate.

7.4 Summary

To demonstrate the usefulness of the approximate diffraction coefficient, obtained

in chapter five, equivalent currents were presented in the context of PTD for a finite

length impedance wedge of arbitrary internal angle. These were eventually incorpo-

rated in a standard general purpose physical theory of diffraction (PTD) code [21]

and results were presented which demonstrated the accuracy of the formulation for

a number of different impedance structures. These included typical shapes such as

plates, finite length cones and cylinders which were partially or fully coated.
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15°, D = 2A, 0i = 90 °, (a) perfectly conducting cone, (b) coated cone:
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CHAPTER VIII

CONCLUSIONS

In this study, asymptotic/high-frequency solutions were developed for analyzing

some non-specular scattering mechanisms associated with coated convex surfaces and

edges where the coating was simulated by approximate boundary conditions. Both

the standard impedance boundary conditions (SIBCs) and the generalized impedance

boundary conditions (GIBCs) were employed for a characterization of edge diffrac-

tion, creeping wave and surface diffracted wave contributions.

Second order generalized impedance boundary conditions (GIBCs) were derived

in chapter two for a single and a three-layer coating and these were employed in chap-

ter three to construct integral equations for scattering by two-dimensional coated

structures of arbitrary cross-section. These integral equations were implemented via

a moment method procedure and the results were compared with reference data

based on analytical or other validated numerical solutions. It was found that the

proposed second order boundary conditions provide an improved simulation of the

coating in comparison with the traditional (first order) impedance boundary condi-

tion and guidelines were given for their region of validity. The primary reason for the

improved simulation is because the second order GIBC accounts for the presence of

polarization current components normal to the coating in addition to the tangential
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ones. In general, the presence of edges or abrupt changes in the material leads to sim-

ulation inaccuracies which become more apparent as the coating thickness increases.

This is due to the inherent non-uniqueness of these boundary conditions at abrupt

terminations, a situation which can only be remedied by introducing additional field

constraints at the terminations [51,52].

The non-specular scattering mechanisms like creeping waves and surface diffracted

waves were considered in chapter four as applied to a coated convex cylinder. Rigor-

ous ray solutions of the scattered fields were presented for a coated convex cylinder

simulated by SIBCs and GIBCs. These were developed in the context of the uniform

geometrical theory of diffraction and specific expressions were given for the scattered

fields in the lit, shadow and transition regions as well as for observations in the near

vicinity of the cylinder. Specifically, UTD expressions were derived for all regions

exterior to the coated cylinder and these were shown to be suited for engineering

computations. As expected, the derived UTD expressions were given in terms of the

generalized Pekeris or Fock-type functions whose evaluation was efficiently performed

via the Fourier Trapezoidal rule suggested by Pearson [45].

In comparison to the solution given by Kim and Wang [41], the rav representations

given here, for the surface diffracted field, are based on a second order generalized

impedance boundary condition which permits the simulation of thin multilayered

coating as demonstrated in the included examples. Also, in our implementation of

the transition fields we employed a rigorous rather than a heuristic evaluation of the

Fock-type integrals. Further, we have presented accurate field representations for

observations on or near the vicinity of the coated cylinder and these can also be used

for computing the radiated fields by a source or an aperture on the surface of the

convex cylinder.
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In chapter five, a most important sourceof non-specularelectromagneticscat-

tering, that of diffraction by an impedancewedgeat skew incidencewasconsidered.

Application of the boundary conditions (SIBCs) on the wedgefacesresulted in a set

of four coupledfunctional differenceequations.Threedifferent approximatesolutions

werederivedon the basisof thesedifferenceequations.Two of the approximatesolu-

tions wereobtained by separatingthe differenceequationsassociatedwith the upper

and lower facesof the impedancewedge,respectively. Thesewere found to recover

the known solutions for three different sets of wedgeanglesand skewnessangles,

namely those correspondingto, normal incidence (80 "-- 90 °) with arbitrary wedge

angle, a half plane (arbitrary _o, internal wedge angle = 0 °) and a two part plane

(arbitrary flo, internal wedge angle = 180°). An important feature of our solution,

lacked by the others [13,14,15,19], is that a single computer code can be employed

to compute the scattered field for all three special cases mentioned above. A third

approximate solution was constructed by approximating the trigonometric functions

sin a and cos a appearing in the difference equations with functions having a period

of 2_. This solution again was shown to reduce to the exact solutions of the half

plane (arbitrary flo, internal wedge angle = 0°) and that of the normal incidence

wedge (t3o = 90°). For other flo and wedge angles, the three approximate solutions

were found to be of acceptable accuracy in certain regions of space and a scheme was

suggested to combine all three approximate solutions for approximating the diffracted

field in the entire angular section exterior to the wedge. Some comparisons with the

exact solution for the right-angled wedge showed that the accuracy of the approx-

imate solutions was still acceptable even for the internal wedge angle of 90 ° which

was quite far from that of a half plane.

To validate the approximate solution, developed in chapter five for an impedance
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wedge,a coupledset of integral equationsfor skewincidenceon an impedancepolyg-

onal cylinder of arbitrary shapewere derived and solved via the moment method.

The surface currents obtained from the solution of the coupled integral equations

were subsequentlyintegrated to yield the scattered field on the diffraction cone. A

correspondingfirst order high frequency (GTD) solution for the far zone scattered

field was then generatedusing the approximate diffraction coefficientand compared

with the momentmethod data for a variety of different wedgeangles. A remarkable

agreementwas found betweenthe first order GTD solution and the corresponding

moment method data for internal wedgeanglesup to 50° .

Finally, to test the usefulness of the approximate skew incidence wedge diffrac-

tion coefficients for practical three dimensional structures, equivalent currents were

presented in the context of PTD for a finite length impedance wedge of arbitrary in-

ternal angle. These were incorporated in a standard general purpose physical theory

of diffraction (PTD) code [21] and results were presented which demonstrated the

accuracy of the formulation for a number of different impedance structures such as

plates, finite length cones and cylinders which were partially or fully coated. The

PTD implementation required a dyadic physical optics (PO) diffraction coefficient

which was derived in appendix A.

For the future work, a characterization of the diffraction effects by impedance

discontinuities in smooth convex cylinders should be pursued. Of interest is the

case where the observer and the source are both at a finite distance away from the

discontinuity. This will accommodate the situation when a creeping wave strikes the

discontinuity and the observation point is also near or on the surface of the impedance

cylinder. To treat this case, at first a parallel analysis should be carried out for an

impedance insert on an impedance plane. The results of this analysis will then be
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extended to the caseof a similar impedancediscontinuity on the convexcylinder

on the assumption that the cylinder radius is large. Alternatively, a direct analysis

could be pursued. The pertaining analysis will certainly be much more complex and

the resulting diffraction coefficients may not, therefore, be of practical use. Using

the diffraction coefficients based on the forementioned analysis, it will be possible to

characterize the scattering and radiation by apertures and conformal antennas on a

convex impedance cylinder. An analysis of the mutual coupling among such devices

is another application of interest.

The proposed research in the above paragraph is concerned with the two dimen-

sional applications. A natural extension of this work would be an analysis for three

dimensional applications. In this case, the electric and magnetic fields are coupled

on the cylinder surface and thus heuristic extensions of the two dimensional results

to three dimensions, usually done in the case of perfectly conducting structures, are

not applicable. In general, therefore, a separate analysis is required in the case of

skew incidence.

The solutions developed in this work, for scattering by an impedance wedge

at skew incidence, were obtained by solving a first order homogeneous functional

difference equation. However, these solutions are approximate and a next step should

be to improve the accuracy of these approximate solutions by employing, for example,

an iterative procedure. Such a procedure will require a solution of a first order

inhomogeneous functional difference equation and, therefore, will make the analysis

more complicated. Another future task should be to pursue a rigorous solution for

an impedance wedge of arbitrary wedge angle with GIBCs imposed on its faces.
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APPENDIX A

PHYSICAL OPTICS DIFFRACTION

COEFFICIENT FOR AN IMPEDANCE

WEDGE AT SKEW INCIDENCE

The impedance wedge diffraction coefficient presented in chapter five predicts

infinite diffracted field at the incident and reflection shadow boundaries. However,

this difficulty can be overcome by subtracting a physical optics diffraction coefficient

from it resulting in a finite field at the shadow boundaries. The diffracted field

obtained in this manner is only a partial field and is called a fringe field. The total

scattered field for a particular finite structure having edges can be comp_lted by

calculating the physical optics field for the structure, separately, and then adding it

to the fringe field.

In this appendix, a dyadic diffraction coefficient, for an impedance wedge, is

derived using physical optics. In other words, we seek a physical optics approximation

to the diffraction tensor given in chapter five.

Consider a plane wave incident on the upper face of an impedance wedge (see

figure A.1) and is represented by

= _e -j_''_, zH "_= he -j_''_ (A.1)
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Figure A.I: Edge geometry and angle definitions.
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where

_i = __ sin Bo cos ¢' - _)sin 3o sin ¢' + k cos _o (A.2)

with ¢' measured from the upper face of the wedge. It is convenient to proceed with

just the z-components, ez and hz, of the incident field. The rest of the components

can be expressed in terms of the z- components, using Maxwell's equations, as

1

e_ - sin Bo (cos _o cos ¢'e_ + sin ¢'hz) (A.3)

1

ev = sin Bo (cos Bo sin ¢'e, - cos ¢'h,) (A.4)

1
h_ - .--=---_-(- sin¢'e, + cosBocos¢'hz) (A.5)

sin/Jo

1
- _ ¢ , + cos ¢/o sin ¢'h,) (A.6)

hy sinSo(C°S 'e

The total field is a sum of the incident field and a reflected field.

z-component of the reflected field to be of the form

We assume the

E: = R,eze -ik*r_, zHz = R',,h,e -ik_r'_ (A.7)

where Re and Rh are the reflection coefficients for the z- components of the electric

and magnetic field, respectively, and _ denotes the propagation direction of the

reflected field and is defined as

_ = -_ sin _3ocos ¢' + _)sin J3o sin ¢' + _ cos ]3o (A.8)

The upper face of the wedge satisfies the impedance boundary conditions (at y = 0)

E, = rl+Z Hz, E, = -r/+Z H, (A.9)



151

and using these, the expressions for R, and Rh can be derived to be

R_ez = 7 [ { (sin 05' + r/+ sin/3o) (sin 05'

2 cos/3° sin 05'cos 05'hz/
J

sin/3o) __'._ / co___ocos_05')_2

(A./0)

with

Rhh, = 712 cos t3o COSO' sin 05'e, + { (sin 05' -

-cos 2 j3o cos 2 05'}h,] (A.tl)

77+

7 = (1 + r/+ sin/_o sin #)(r/+ + sin/3o sin #)
(A.12)

Now the surface electric and magnetic currents induced on the upper face (Y = 0) of

the wedge are

where ¢z = _ for the upper face and H'_ and E-_ denote the total field which is the

sum of the incident and reflected fields. It is convenient to write these currents in

the form

zT, = -]e-jk{*_°'_°-_';na°¢°'e'') (A.14)

where ] and _ are determined, using (A.10) - (A.15), to be

3" = 27 sin 05' cos/30 cos 05'e, + sin 05' + r/+ /

1 05, ]+--{(sin + q+sin_o)e. -cOS_oCOS05'h_}.?
r/+

(A.16)
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r
= -23' sin¢' [ {(sin ¢' + 7?+sinBo)e,- cos/30cos¢% }

L

(A.17)

The far-zone scattered field due to the induced surface currents on the upper face

(y = 0) of the wedge is given by

- 4"---_ , I_- -Z'} ds' (A.18)

where the integration is performed over the upper face of the wedge. The _ unit

vector is defined as

= _: sin/3° cos ¢ + # sin/30 sin ¢ + _ cos/30 (A.19)

with ¢ measured from the upper face of the wedge. Assuming now that the edge

diffraction is mainly due to the surface currents concentrated on a narrow strip along

the edge, the edge diffracted part of the field E° can be written as

jk

e-Jk_(x-xt)_ +y2 +(z--z' )2

( dz 'dx' (A.20)

z - x') 2 + y_ + (z - z') 2

where the absence of the upper limit, in the above integral, on the x' integration

denotes that only the asymptotic endpoint contribution at x' = 0 is taken into

account. Employing the method of stationary phase for the z' integration, one can

evaluate the integral in equation (A.20) and the expression for the diffracted field is

given by

i {,ix(,_x_)+ x_} (A.21)

2 e-j _ @-jk_._

-_ " - _kpsinl3o 4sin3o(cos¢+cos¢')
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with ] and _ defined in (A.16) and (A.17) respectively. The edge diffraction tensor

given in (A.21) can now be transformed into the edge-fixed coordinate system [43]

and the resultant diffracted field from the edge is given by

E_o(_)[

[ ~ -A,(_)

DP° ( ¢, ¢'; _3o, _+ )

-DP_ °( ¢, ¢'; _3o, rl+ )

,[
DP°(¢,¢';3o,--7 i Ez,o(QE)

' ) ] [ E;,(q_)
D P° (¢, ¢';/3o, ,7_

(A.22)

where s is the distance between the diffraction and obervation points and Al(s) is

e-Jk_ e-J_

A,(s)= x/_ _ (A.23)

The 2 × 2 matrix in (A.22) represents the physical optics dyadic diffraction coefficient

similar to the one presented in chapter five. The components of the diffraction matrix

can be expressed as

3o, r/+) = A2(¢, ¢';/3o) [E(¢, ¢';/3o, 77+)DP° (¢, ¢';
[

De° (¢, _'; Zo,,7+)= A_(¢, ¢'; Zo) [a(¢, ¢'; Zo,,7+)+

with

(,4.24)

cos_oH (9, ¢';_o,_ ) ]

A2(¢, ¢';/3o) = (1 - sin 2 _3osin 2 ¢')-x (1 - sin _/3o sin _ ¢)-' (A.25)

and

E_7

I
col

A

cos ¢ cos ¢'

cos _3osin ¢ cos ¢'

- cos/3o sin ¢ cos ¢'

cos ¢ cos ¢'

V _

v,

(A.26)
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i"

H,

cos _o sin ¢ sin ¢'

- cos ¢ sin ¢'

cos ¢ sin ¢'

cos/_o sin ¢ sin ¢' y _

(A.27)

where the notation E(¢,¢';do, r/+) = E', E (¢,¢';_o, _-_-) - E,, etc., has been em-

ployed for simplicity. The U and the V functions are given by

sin ¢'

U" = uP°(¢, ¢'; do, 7+) = cos¢ + cos ¢'

(1 - r/+ sin do sin ¢)

(c os2 do - sin_ do cos ¢cos ¢') (1 + rl+ sin do sin ¢')
(A.28)

V '_ = V P° (¢, ¢'; do, 7]+) = - sin do cos/3o sin ¢' (1 - 7]+ sin do sin ¢)
(7?+ + sin 8o sin ¢')

(A.29)

For the case when the lower face of the impedance wedge is illuminated the above

expressions will be applicable with the replacement 7/+ ---, rl_, ¢' ---* nr - 0', ¢ ---*

n_r-¢ and 3o ---* 7r - do.
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